Step | Hyp | Ref
| Expression |
1 | | dfcgra2.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
2 | | dfcgra2.i |
. . 3
⊢ 𝐼 = (Itv‘𝐺) |
3 | | eqid 2777 |
. . 3
⊢
(hlG‘𝐺) =
(hlG‘𝐺) |
4 | | dfcgra2.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
5 | 4 | ad3antrrr 720 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐺 ∈ TarskiG) |
6 | | sacgr.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
7 | 6 | ad3antrrr 720 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑋 ∈ 𝑃) |
8 | | dfcgra2.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
9 | 8 | ad3antrrr 720 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐵 ∈ 𝑃) |
10 | | dfcgra2.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
11 | 10 | ad3antrrr 720 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐶 ∈ 𝑃) |
12 | | sacgr.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
13 | 12 | ad3antrrr 720 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑌 ∈ 𝑃) |
14 | | dfcgra2.e |
. . . 4
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
15 | 14 | ad3antrrr 720 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ 𝑃) |
16 | | dfcgra2.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
17 | 16 | ad3antrrr 720 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐹 ∈ 𝑃) |
18 | | dfcgra2.m |
. . . 4
⊢ − =
(dist‘𝐺) |
19 | | eqid 2777 |
. . . 4
⊢
(LineG‘𝐺) =
(LineG‘𝐺) |
20 | | eqid 2777 |
. . . 4
⊢
(pInvG‘𝐺) =
(pInvG‘𝐺) |
21 | | eqid 2777 |
. . . 4
⊢
((pInvG‘𝐺)‘𝐸) = ((pInvG‘𝐺)‘𝐸) |
22 | | simpllr 766 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥 ∈ 𝑃) |
23 | 1, 18, 2, 19, 20, 5, 15, 21, 22 | mircl 26012 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘𝑥) ∈ 𝑃) |
24 | | simplr 759 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑦 ∈ 𝑃) |
25 | | eqid 2777 |
. . . 4
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
26 | 1, 18, 2, 19, 20, 5, 15, 21, 22 | mircgr 26008 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (𝐸 − (((pInvG‘𝐺)‘𝐸)‘𝑥)) = (𝐸 − 𝑥)) |
27 | 1, 18, 2, 5, 15, 23, 15, 22, 26 | tgcgrcomlr 25831 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ((((pInvG‘𝐺)‘𝐸)‘𝑥) − 𝐸) = (𝑥 − 𝐸)) |
28 | | eqid 2777 |
. . . . . . . 8
⊢
((pInvG‘𝐺)‘𝐵) = ((pInvG‘𝐺)‘𝐵) |
29 | 1, 18, 2, 19, 20, 4, 8, 28, 6 | mircl 26012 |
. . . . . . 7
⊢ (𝜑 → (((pInvG‘𝐺)‘𝐵)‘𝑋) ∈ 𝑃) |
30 | 29 | ad3antrrr 720 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐵)‘𝑋) ∈ 𝑃) |
31 | | simpr1 1205 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉) |
32 | 1, 18, 2, 25, 5, 30, 9, 11, 22, 15, 24, 31 | cgr3simp1 25871 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ((((pInvG‘𝐺)‘𝐵)‘𝑋) − 𝐵) = (𝑥 − 𝐸)) |
33 | 1, 18, 2, 19, 20, 4, 8, 28, 6 | mircgr 26008 |
. . . . . . 7
⊢ (𝜑 → (𝐵 − (((pInvG‘𝐺)‘𝐵)‘𝑋)) = (𝐵 − 𝑋)) |
34 | 1, 18, 2, 4, 8, 29,
8, 6, 33 | tgcgrcomlr 25831 |
. . . . . 6
⊢ (𝜑 → ((((pInvG‘𝐺)‘𝐵)‘𝑋) − 𝐵) = (𝑋 − 𝐵)) |
35 | 34 | ad3antrrr 720 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ((((pInvG‘𝐺)‘𝐵)‘𝑋) − 𝐵) = (𝑋 − 𝐵)) |
36 | 27, 32, 35 | 3eqtr2rd 2820 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (𝑋 − 𝐵) = ((((pInvG‘𝐺)‘𝐸)‘𝑥) − 𝐸)) |
37 | 1, 18, 2, 25, 5, 30, 9, 11, 22, 15, 24, 31 | cgr3simp2 25872 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (𝐵 − 𝐶) = (𝐸 − 𝑦)) |
38 | 1, 18, 2, 19, 20, 4, 8, 28, 6 | mirmir 26013 |
. . . . . . . . . 10
⊢ (𝜑 → (((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋)) = 𝑋) |
39 | | eqidd 2778 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 = 𝐵) |
40 | | eqidd 2778 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 = 𝐶) |
41 | 38, 39, 40 | s3eqd 14015 |
. . . . . . . . 9
⊢ (𝜑 →
〈“(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))𝐵𝐶”〉 = 〈“𝑋𝐵𝐶”〉) |
42 | 41 | ad3antrrr 720 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))𝐵𝐶”〉 = 〈“𝑋𝐵𝐶”〉) |
43 | | sacgr.4 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ≠ 𝑋) |
44 | 43 | necomd 3023 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ≠ 𝐵) |
45 | 1, 18, 2, 19, 20, 4, 8, 28, 6,
44 | mirne 26018 |
. . . . . . . . . 10
⊢ (𝜑 → (((pInvG‘𝐺)‘𝐵)‘𝑋) ≠ 𝐵) |
46 | 45 | ad3antrrr 720 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐵)‘𝑋) ≠ 𝐵) |
47 | 1, 18, 2, 19, 20, 5, 25, 28, 21, 30, 9, 22, 15, 11, 24, 46, 31 | mirtrcgr 26034 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))𝐵𝐶”〉(cgrG‘𝐺)〈“(((pInvG‘𝐺)‘𝐸)‘𝑥)𝐸𝑦”〉) |
48 | 42, 47 | eqbrtrrd 4910 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“𝑋𝐵𝐶”〉(cgrG‘𝐺)〈“(((pInvG‘𝐺)‘𝐸)‘𝑥)𝐸𝑦”〉) |
49 | 1, 18, 2, 25, 5, 7,
9, 11, 23, 15, 24, 48 | cgr3swap13 25876 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“𝐶𝐵𝑋”〉(cgrG‘𝐺)〈“𝑦𝐸(((pInvG‘𝐺)‘𝐸)‘𝑥)”〉) |
50 | 1, 18, 2, 25, 5, 11, 9, 7, 24, 15, 23, 49 | cgr3simp3 25873 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (𝑋 − 𝐶) = ((((pInvG‘𝐺)‘𝐸)‘𝑥) − 𝑦)) |
51 | 1, 18, 2, 5, 7, 11,
23, 24, 50 | tgcgrcomlr 25831 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (𝐶 − 𝑋) = (𝑦 − (((pInvG‘𝐺)‘𝐸)‘𝑥))) |
52 | 1, 18, 25, 5, 7, 9,
11, 23, 15, 24, 36, 37, 51 | trgcgr 25867 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“𝑋𝐵𝐶”〉(cgrG‘𝐺)〈“(((pInvG‘𝐺)‘𝐸)‘𝑥)𝐸𝑦”〉) |
53 | | sacgr.5 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ≠ 𝑌) |
54 | 53 | ad3antrrr 720 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ≠ 𝑌) |
55 | 54 | necomd 3023 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑌 ≠ 𝐸) |
56 | | dfcgra2.d |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
57 | 56 | ad3antrrr 720 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐷 ∈ 𝑃) |
58 | | simpr2 1207 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥((hlG‘𝐺)‘𝐸)𝐷) |
59 | 1, 2, 3, 22, 57, 15, 5, 58 | hlne1 25956 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥 ≠ 𝐸) |
60 | 1, 18, 2, 19, 20, 5, 15, 21, 22, 59 | mirne 26018 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘𝑥) ≠ 𝐸) |
61 | 1, 2, 3, 22, 57, 15, 5, 58 | hlcomd 25955 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐷((hlG‘𝐺)‘𝐸)𝑥) |
62 | | sacgr.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝑌)) |
63 | 62 | ad3antrrr 720 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝐷𝐼𝑌)) |
64 | 1, 2, 3, 57, 22, 13, 5, 15, 61, 63 | btwnhl 25965 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑥𝐼𝑌)) |
65 | 1, 18, 2, 5, 22, 15, 13, 64 | tgbtwncom 25839 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑌𝐼𝑥)) |
66 | 1, 18, 2, 19, 20, 5, 15, 21, 22 | mirmir 26013 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘(((pInvG‘𝐺)‘𝐸)‘𝑥)) = 𝑥) |
67 | 66 | oveq2d 6938 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (𝑌𝐼(((pInvG‘𝐺)‘𝐸)‘(((pInvG‘𝐺)‘𝐸)‘𝑥))) = (𝑌𝐼𝑥)) |
68 | 65, 67 | eleqtrrd 2861 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑌𝐼(((pInvG‘𝐺)‘𝐸)‘(((pInvG‘𝐺)‘𝐸)‘𝑥)))) |
69 | 1, 18, 2, 19, 20, 5, 21, 3, 15, 13, 23, 15, 55, 60, 68 | mirhl2 26032 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑌((hlG‘𝐺)‘𝐸)(((pInvG‘𝐺)‘𝐸)‘𝑥)) |
70 | 1, 2, 3, 13, 23, 15, 5, 69 | hlcomd 25955 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘𝑥)((hlG‘𝐺)‘𝐸)𝑌) |
71 | | simpr3 1209 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑦((hlG‘𝐺)‘𝐸)𝐹) |
72 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 23, 24, 52, 70, 71 | iscgrad 26159 |
. 2
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“𝑋𝐵𝐶”〉(cgrA‘𝐺)〈“𝑌𝐸𝐹”〉) |
73 | | dfcgra2.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
74 | | sacgr.1 |
. . . . . . 7
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
75 | 1, 2, 3, 4, 73, 8,
10, 56, 14, 16, 74 | cgrane2 26161 |
. . . . . 6
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
76 | 1, 2, 4, 3, 29, 8,
10, 45, 75 | cgraid 26167 |
. . . . 5
⊢ (𝜑 →
〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrA‘𝐺)〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉) |
77 | 1, 2, 3, 4, 73, 8,
10, 56, 14, 16, 74 | cgrane1 26160 |
. . . . . 6
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
78 | | sacgr.2 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝑋)) |
79 | 38 | oveq2d 6938 |
. . . . . . 7
⊢ (𝜑 → (𝐴𝐼(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))) = (𝐴𝐼𝑋)) |
80 | 78, 79 | eleqtrrd 2861 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋)))) |
81 | 1, 18, 2, 19, 20, 4, 28, 3, 8,
73, 29, 73, 77, 45, 80 | mirhl2 26032 |
. . . . 5
⊢ (𝜑 → 𝐴((hlG‘𝐺)‘𝐵)(((pInvG‘𝐺)‘𝐵)‘𝑋)) |
82 | 1, 2, 3, 4, 29, 8,
10, 29, 8, 10, 76, 73, 81 | cgrahl1 26164 |
. . . 4
⊢ (𝜑 →
〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrA‘𝐺)〈“𝐴𝐵𝐶”〉) |
83 | 1, 2, 4, 3, 29, 8,
10, 73, 8, 10, 82, 56, 14, 16, 74 | cgratr 26171 |
. . 3
⊢ (𝜑 →
〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
84 | 1, 2, 3, 4, 29, 8,
10, 56, 14, 16 | iscgra 26157 |
. . 3
⊢ (𝜑 →
(〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹))) |
85 | 83, 84 | mpbid 224 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) |
86 | 72, 85 | r19.29vva 3266 |
1
⊢ (𝜑 → 〈“𝑋𝐵𝐶”〉(cgrA‘𝐺)〈“𝑌𝐸𝐹”〉) |