![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sb2v | Structured version Visualization version GIF version |
Description: Version of sb2 2481 with a disjoint variable condition, which does not require ax-13 2390. (Contributed by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
sb2v | ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2226 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜑)) | |
2 | equs4v 2109 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | |
3 | df-sb 2070 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → 𝜑) ∧ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑))) | |
4 | 1, 2, 3 | sylanbrc 580 | 1 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∀wal 1656 ∃wex 1880 [wsb 2069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-12 2222 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1881 df-sb 2070 |
This theorem is referenced by: stdpc4v 2303 equsb1v 2306 sb6 2309 sbi1v 2337 iota4 6103 bj-sb3v 33286 bj-hbs1 33287 bj-hbsb2av 33289 wl-lem-moexsb 33893 absnsb 41962 |
Copyright terms: Public domain | W3C validator |