Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbal2OLD Structured version   Visualization version   GIF version

Theorem sbal2OLD 2553
 Description: Obsolete version of sbal2 2552 as of 23-Sep-2023. (Contributed by NM, 2-Jan-2002.) Remove a distinct variable constraint. (Revised by Wolf Lammen, 24-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sbal2OLD (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem sbal2OLD
StepHypRef Expression
1 sbid 2256 . . . . 5 ([𝑦 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥𝜑)
2 drsb2 2266 . . . . 5 (∀𝑦 𝑦 = 𝑧 → ([𝑦 / 𝑦]∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑))
31, 2bitr3id 288 . . . 4 (∀𝑦 𝑦 = 𝑧 → (∀𝑥𝜑 ↔ [𝑧 / 𝑦]∀𝑥𝜑))
4 sbid 2256 . . . . . 6 ([𝑦 / 𝑦]𝜑𝜑)
5 drsb2 2266 . . . . . 6 (∀𝑦 𝑦 = 𝑧 → ([𝑦 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑))
64, 5bitr3id 288 . . . . 5 (∀𝑦 𝑦 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑦]𝜑))
76dral2 2452 . . . 4 (∀𝑦 𝑦 = 𝑧 → (∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
83, 7bitr3d 284 . . 3 (∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
98adantl 485 . 2 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑦 𝑦 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
10 sb4b 2491 . . . 4 (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)))
1110adantl 485 . . 3 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)))
12 nfnae 2448 . . . . . 6 𝑥 ¬ ∀𝑦 𝑦 = 𝑧
13 sb4b 2491 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑧 → ([𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧𝜑)))
1412, 13albid 2223 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑧 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑥𝑦(𝑦 = 𝑧𝜑)))
15 alcom 2161 . . . . 5 (∀𝑥𝑦(𝑦 = 𝑧𝜑) ↔ ∀𝑦𝑥(𝑦 = 𝑧𝜑))
1614, 15syl6bb 290 . . . 4 (¬ ∀𝑦 𝑦 = 𝑧 → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑦𝑥(𝑦 = 𝑧𝜑)))
17 nfnae 2448 . . . . 5 𝑦 ¬ ∀𝑥 𝑥 = 𝑦
18 nfeqf1 2389 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑦 = 𝑧)
19 19.21t 2205 . . . . . 6 (Ⅎ𝑥 𝑦 = 𝑧 → (∀𝑥(𝑦 = 𝑧𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑)))
2018, 19syl 17 . . . . 5 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑥(𝑦 = 𝑧𝜑) ↔ (𝑦 = 𝑧 → ∀𝑥𝜑)))
2117, 20albid 2223 . . . 4 (¬ ∀𝑥 𝑥 = 𝑦 → (∀𝑦𝑥(𝑦 = 𝑧𝜑) ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)))
2216, 21sylan9bbr 514 . . 3 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑥[𝑧 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝑧 → ∀𝑥𝜑)))
2311, 22bitr4d 285 . 2 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
249, 23pm2.61dan 812 1 (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536  Ⅎwnf 1785  [wsb 2069 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2143  ax-11 2159  ax-12 2176  ax-13 2382 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator