![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbanv | Structured version Visualization version GIF version |
Description: Substitution distributes over conjunction. Version of sban 2474 with a disjoint variable condition, not requiring ax-13 2333. (Contributed by Wolf Lammen, 18-Jan-2023.) |
Ref | Expression |
---|---|
sbanv | ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbnv 2276 | . . 3 ⊢ ([𝑦 / 𝑥] ¬ (𝜑 → ¬ 𝜓) ↔ ¬ [𝑦 / 𝑥](𝜑 → ¬ 𝜓)) | |
2 | sbimv 2279 | . . . 4 ⊢ ([𝑦 / 𝑥](𝜑 → ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥] ¬ 𝜓)) | |
3 | sbnv 2276 | . . . . 5 ⊢ ([𝑦 / 𝑥] ¬ 𝜓 ↔ ¬ [𝑦 / 𝑥]𝜓) | |
4 | 3 | imbi2i 328 | . . . 4 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥] ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓)) |
5 | 2, 4 | bitri 267 | . . 3 ⊢ ([𝑦 / 𝑥](𝜑 → ¬ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓)) |
6 | 1, 5 | xchbinx 326 | . 2 ⊢ ([𝑦 / 𝑥] ¬ (𝜑 → ¬ 𝜓) ↔ ¬ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓)) |
7 | df-an 387 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ ¬ (𝜑 → ¬ 𝜓)) | |
8 | 7 | sbbii 2019 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ [𝑦 / 𝑥] ¬ (𝜑 → ¬ 𝜓)) |
9 | df-an 387 | . 2 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓) ↔ ¬ ([𝑦 / 𝑥]𝜑 → ¬ [𝑦 / 𝑥]𝜓)) | |
10 | 6, 8, 9 | 3bitr4i 295 | 1 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 [wsb 2011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-10 2134 ax-12 2162 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-ex 1824 df-nf 1828 df-sb 2012 |
This theorem is referenced by: sbbiv 2281 rmo3 3744 |
Copyright terms: Public domain | W3C validator |