Step | Hyp | Ref
| Expression |
1 | | ax6ev 2079 |
. 2
⊢
∃𝑢 𝑢 = 𝑦 |
2 | | ax6ev 2079 |
. 2
⊢
∃𝑣 𝑣 = 𝑤 |
3 | | 2sb6 2312 |
. . . . . . . . . 10
⊢ ([𝑣 / 𝑧][𝑢 / 𝑥]𝜑 ↔ ∀𝑧∀𝑥((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜑)) |
4 | | alcom 2211 |
. . . . . . . . . 10
⊢
(∀𝑧∀𝑥((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜑) ↔ ∀𝑥∀𝑧((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜑)) |
5 | | ancomst 458 |
. . . . . . . . . . 11
⊢ (((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜑)) |
6 | 5 | 2albii 1921 |
. . . . . . . . . 10
⊢
(∀𝑥∀𝑧((𝑧 = 𝑣 ∧ 𝑥 = 𝑢) → 𝜑) ↔ ∀𝑥∀𝑧((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜑)) |
7 | 3, 4, 6 | 3bitri 289 |
. . . . . . . . 9
⊢ ([𝑣 / 𝑧][𝑢 / 𝑥]𝜑 ↔ ∀𝑥∀𝑧((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜑)) |
8 | | 2sb6 2312 |
. . . . . . . . 9
⊢ ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ ∀𝑥∀𝑧((𝑥 = 𝑢 ∧ 𝑧 = 𝑣) → 𝜑)) |
9 | 7, 8 | bitr4i 270 |
. . . . . . . 8
⊢ ([𝑣 / 𝑧][𝑢 / 𝑥]𝜑 ↔ [𝑢 / 𝑥][𝑣 / 𝑧]𝜑) |
10 | | nfv 2015 |
. . . . . . . . 9
⊢
Ⅎ𝑧 𝑢 = 𝑦 |
11 | | sbequ 2507 |
. . . . . . . . 9
⊢ (𝑢 = 𝑦 → ([𝑢 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
12 | 10, 11 | sbbid 2286 |
. . . . . . . 8
⊢ (𝑢 = 𝑦 → ([𝑣 / 𝑧][𝑢 / 𝑥]𝜑 ↔ [𝑣 / 𝑧][𝑦 / 𝑥]𝜑)) |
13 | 9, 12 | syl5bbr 277 |
. . . . . . 7
⊢ (𝑢 = 𝑦 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑣 / 𝑧][𝑦 / 𝑥]𝜑)) |
14 | | sbequ 2507 |
. . . . . . 7
⊢ (𝑣 = 𝑤 → ([𝑣 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑)) |
15 | 13, 14 | sylan9bb 507 |
. . . . . 6
⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧][𝑦 / 𝑥]𝜑)) |
16 | | nfv 2015 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑣 = 𝑤 |
17 | | sbequ 2507 |
. . . . . . . 8
⊢ (𝑣 = 𝑤 → ([𝑣 / 𝑧]𝜑 ↔ [𝑤 / 𝑧]𝜑)) |
18 | 16, 17 | sbbid 2286 |
. . . . . . 7
⊢ (𝑣 = 𝑤 → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑢 / 𝑥][𝑤 / 𝑧]𝜑)) |
19 | | sbequ 2507 |
. . . . . . 7
⊢ (𝑢 = 𝑦 → ([𝑢 / 𝑥][𝑤 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) |
20 | 18, 19 | sylan9bbr 508 |
. . . . . 6
⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → ([𝑢 / 𝑥][𝑣 / 𝑧]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) |
21 | 15, 20 | bitr3d 273 |
. . . . 5
⊢ ((𝑢 = 𝑦 ∧ 𝑣 = 𝑤) → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)) |
22 | 21 | ex 403 |
. . . 4
⊢ (𝑢 = 𝑦 → (𝑣 = 𝑤 → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑))) |
23 | 22 | exlimdv 2034 |
. . 3
⊢ (𝑢 = 𝑦 → (∃𝑣 𝑣 = 𝑤 → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑))) |
24 | 23 | exlimiv 2031 |
. 2
⊢
(∃𝑢 𝑢 = 𝑦 → (∃𝑣 𝑣 = 𝑤 → ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑))) |
25 | 1, 2, 24 | mp2 9 |
1
⊢ ([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑) |