MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbequ8ALT Structured version   Visualization version   GIF version

Theorem sbequ8ALT 2482
Description: Alternate proof of sbequ8 2016, shorter but requiring more axioms. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbequ8ALT ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥](𝑥 = 𝑦𝜑))

Proof of Theorem sbequ8ALT
StepHypRef Expression
1 equsb1 2443 . . 3 [𝑦 / 𝑥]𝑥 = 𝑦
21a1bi 354 . 2 ([𝑦 / 𝑥]𝜑 ↔ ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑))
3 sbim 2470 . 2 ([𝑦 / 𝑥](𝑥 = 𝑦𝜑) ↔ ([𝑦 / 𝑥]𝑥 = 𝑦 → [𝑦 / 𝑥]𝜑))
42, 3bitr4i 270 1 ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥](𝑥 = 𝑦𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  [wsb 2011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-10 2134  ax-12 2162  ax-13 2333
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-ex 1824  df-nf 1828  df-sb 2012
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator