![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbi1v | Structured version Visualization version GIF version |
Description: Move implication out of substitution. Version of sbi1 2523 with a disjoint variable condition, not requiring ax-13 2391. (Contributed by Wolf Lammen, 18-Jan-2023.) |
Ref | Expression |
---|---|
sbi1v | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sb4v 2308 | . 2 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓))) | |
2 | sb4v 2308 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
3 | ax-2 7 | . . . 4 ⊢ ((𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((𝑥 = 𝑦 → 𝜑) → (𝑥 = 𝑦 → 𝜓))) | |
4 | 3 | al2imi 1916 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜓))) |
5 | sb2v 2302 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜓) → [𝑦 / 𝑥]𝜓) | |
6 | 2, 4, 5 | syl56 36 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
7 | 1, 6 | syl 17 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1656 [wsb 2069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-10 2194 ax-12 2222 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-ex 1881 df-nf 1885 df-sb 2070 |
This theorem is referenced by: sbimv 2339 spsbimvOLD 2343 |
Copyright terms: Public domain | W3C validator |