![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbi2v | Structured version Visualization version GIF version |
Description: Move implication into substitution. Version of sbi2 2468 with a disjoint variable condition, not requiring ax-13 2333. (Contributed by Wolf Lammen, 18-Jan-2023.) |
Ref | Expression |
---|---|
sbi2v | ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbnv 2276 | . . 3 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | |
2 | pm2.21 121 | . . . 4 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 2 | sbimi 2017 | . . 3 ⊢ ([𝑦 / 𝑥] ¬ 𝜑 → [𝑦 / 𝑥](𝜑 → 𝜓)) |
4 | 1, 3 | sylbir 227 | . 2 ⊢ (¬ [𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥](𝜑 → 𝜓)) |
5 | ax-1 6 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
6 | 5 | sbimi 2017 | . 2 ⊢ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑 → 𝜓)) |
7 | 4, 6 | ja 175 | 1 ⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 [wsb 2011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-10 2134 ax-12 2162 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-ex 1824 df-nf 1828 df-sb 2012 |
This theorem is referenced by: sbimv 2279 |
Copyright terms: Public domain | W3C validator |