MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simp3OLD Structured version   Visualization version   GIF version

Theorem simp3OLD 1150
Description: Obsolete version of simp3 1132 as of 22-Jun-2022. (Contributed by NM, 21-Apr-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
simp3OLD ((𝜑𝜓𝜒) → 𝜒)

Proof of Theorem simp3OLD
StepHypRef Expression
1 3simpc 1146 . 2 ((𝜑𝜓𝜒) → (𝜓𝜒))
21simprd 483 1 ((𝜑𝜓𝜒) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 383  df-3an 1073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator