MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpl11OLD Structured version   Visualization version   GIF version

Theorem simpl11OLD 1323
Description: Obsolete version of simpl11 1322 as of 24-Jun-2022. (Contributed by NM, 9-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
simpl11OLD ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂) → 𝜑)

Proof of Theorem simpl11OLD
StepHypRef Expression
1 simp11 1253 . 2 (((𝜑𝜓𝜒) ∧ 𝜃𝜏) → 𝜑)
21adantr 468 1 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 198  df-an 385  df-3an 1102
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator