MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpl3lOLD Structured version   Visualization version   GIF version

Theorem simpl3lOLD 1303
Description: Obsolete version of simpl3l 1302 as of 23-Jun-2022. (Contributed by NM, 9-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
simpl3lOLD (((𝜒𝜃 ∧ (𝜑𝜓)) ∧ 𝜏) → 𝜑)

Proof of Theorem simpl3lOLD
StepHypRef Expression
1 simp3l 1259 . 2 ((𝜒𝜃 ∧ (𝜑𝜓)) → 𝜑)
21adantr 473 1 (((𝜒𝜃 ∧ (𝜑𝜓)) ∧ 𝜏) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  w3a 1108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 386  df-3an 1110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator