MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplOLD Structured version   Visualization version   GIF version

Theorem simplOLD 477
Description: Obsolete version of simpl 476 as of 14-Jun-2022. (Contributed by NM, 3-Jan-1993.) (Proof shortened by Wolf Lammen, 13-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
simplOLD ((𝜑𝜓) → 𝜑)

Proof of Theorem simplOLD
StepHypRef Expression
1 ax-1 6 . 2 (𝜑 → (𝜓𝜑))
21imp 397 1 ((𝜑𝜓) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator