MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simplr2OLD Structured version   Visualization version   GIF version

Theorem simplr2OLD 1235
Description: Obsolete version of simplr2 1234 as of 23-Jun-2022. (Contributed by NM, 9-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
simplr2OLD (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜓)

Proof of Theorem simplr2OLD
StepHypRef Expression
1 simpr2 1207 . 2 ((𝜃 ∧ (𝜑𝜓𝜒)) → 𝜓)
21adantr 474 1 (((𝜃 ∧ (𝜑𝜓𝜒)) ∧ 𝜏) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-3an 1073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator