MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpr2rOLD Structured version   Visualization version   GIF version

Theorem simpr2rOLD 1269
Description: Obsolete version of simpr2r 1268 as of 24-Jun-2022. (Contributed by NM, 9-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
simpr2rOLD ((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)

Proof of Theorem simpr2rOLD
StepHypRef Expression
1 simp2r 1214 . 2 ((𝜒 ∧ (𝜑𝜓) ∧ 𝜃) → 𝜓)
21adantl 475 1 ((𝜏 ∧ (𝜒 ∧ (𝜑𝜓) ∧ 𝜃)) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-3an 1073
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator