MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprl1OLD Structured version   Visualization version   GIF version

Theorem simprl1OLD 1286
Description: Obsolete version of simprl1 1285 as of 23-Jun-2022. (Contributed by NM, 9-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
simprl1OLD ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜑)

Proof of Theorem simprl1OLD
StepHypRef Expression
1 simpl1 1246 . 2 (((𝜑𝜓𝜒) ∧ 𝜃) → 𝜑)
21adantl 475 1 ((𝜏 ∧ ((𝜑𝜓𝜒) ∧ 𝜃)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-3an 1113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator