MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snnexOLD Structured version   Visualization version   GIF version

Theorem snnexOLD 7165
Description: Obsolete proof of snnex 7164 as of 5-Dec-2021. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snnexOLD {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem snnexOLD
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vprc 4958 . . . 4 ¬ V ∈ V
2 vsnid 4367 . . . . . . . . 9 𝑧 ∈ {𝑧}
3 ax6ev 2071 . . . . . . . . . 10 𝑦 𝑦 = 𝑧
4 sneq 4344 . . . . . . . . . . 11 (𝑧 = 𝑦 → {𝑧} = {𝑦})
54equcoms 2117 . . . . . . . . . 10 (𝑦 = 𝑧 → {𝑧} = {𝑦})
63, 5eximii 1931 . . . . . . . . 9 𝑦{𝑧} = {𝑦}
7 snex 5064 . . . . . . . . . 10 {𝑧} ∈ V
8 eleq2 2833 . . . . . . . . . . 11 (𝑥 = {𝑧} → (𝑧𝑥𝑧 ∈ {𝑧}))
9 eqeq1 2769 . . . . . . . . . . . 12 (𝑥 = {𝑧} → (𝑥 = {𝑦} ↔ {𝑧} = {𝑦}))
109exbidv 2016 . . . . . . . . . . 11 (𝑥 = {𝑧} → (∃𝑦 𝑥 = {𝑦} ↔ ∃𝑦{𝑧} = {𝑦}))
118, 10anbi12d 624 . . . . . . . . . 10 (𝑥 = {𝑧} → ((𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦}) ↔ (𝑧 ∈ {𝑧} ∧ ∃𝑦{𝑧} = {𝑦})))
127, 11spcev 3452 . . . . . . . . 9 ((𝑧 ∈ {𝑧} ∧ ∃𝑦{𝑧} = {𝑦}) → ∃𝑥(𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦}))
132, 6, 12mp2an 683 . . . . . . . 8 𝑥(𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦})
14 eluniab 4605 . . . . . . . 8 (𝑧 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ↔ ∃𝑥(𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦}))
1513, 14mpbir 222 . . . . . . 7 𝑧 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}}
16 vex 3353 . . . . . . 7 𝑧 ∈ V
1715, 162th 255 . . . . . 6 (𝑧 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ↔ 𝑧 ∈ V)
1817eqriv 2762 . . . . 5 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} = V
1918eleq1i 2835 . . . 4 ( {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V ↔ V ∈ V)
201, 19mtbir 314 . . 3 ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V
21 uniexg 7153 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
2220, 21mto 188 . 2 ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V
2322nelir 3043 1 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1652  wex 1874  wcel 2155  {cab 2751  wnel 3040  Vcvv 3350  {csn 4334   cuni 4594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-nel 3041  df-rex 3061  df-v 3352  df-dif 3735  df-un 3737  df-nul 4080  df-sn 4335  df-pr 4337  df-uni 4595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator