![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spimeh | Structured version Visualization version GIF version |
Description: Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Wolf Lammen, 10-Dec-2017.) |
Ref | Expression |
---|---|
spimeh.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
spimeh.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spimeh | ⊢ (𝜑 → ∃𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spimeh.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
2 | ax6ev 2023 | . . . 4 ⊢ ∃𝑥 𝑥 = 𝑦 | |
3 | spimeh.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
4 | 2, 3 | eximii 1880 | . . 3 ⊢ ∃𝑥(𝜑 → 𝜓) |
5 | 4 | 19.35i 1925 | . 2 ⊢ (∀𝑥𝜑 → ∃𝑥𝜓) |
6 | 1, 5 | syl 17 | 1 ⊢ (𝜑 → ∃𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1599 ∃wex 1823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-6 2021 |
This theorem depends on definitions: df-bi 199 df-ex 1824 |
This theorem is referenced by: bj-spimevw 33260 bj-cbvexiw 33262 |
Copyright terms: Public domain | W3C validator |