Proof of Theorem splfv2aOLD
Step | Hyp | Ref
| Expression |
1 | | spllen.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ Word 𝐴) |
2 | | spllen.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (0...𝑇)) |
3 | | spllen.t |
. . . 4
⊢ (𝜑 → 𝑇 ∈ (0...(♯‘𝑆))) |
4 | | spllen.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Word 𝐴) |
5 | | splvalOLD 13861 |
. . . 4
⊢ ((𝑆 ∈ Word 𝐴 ∧ (𝐹 ∈ (0...𝑇) ∧ 𝑇 ∈ (0...(♯‘𝑆)) ∧ 𝑅 ∈ Word 𝐴)) → (𝑆 spliceOLD 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 substr 〈0, 𝐹〉) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))) |
6 | 1, 2, 3, 4, 5 | syl13anc 1497 |
. . 3
⊢ (𝜑 → (𝑆 spliceOLD 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 substr 〈0, 𝐹〉) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))) |
7 | | elfznn0 12727 |
. . . . . . 7
⊢ (𝐹 ∈ (0...𝑇) → 𝐹 ∈
ℕ0) |
8 | 2, 7 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈
ℕ0) |
9 | 8 | nn0cnd 11680 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ ℂ) |
10 | | splfv2a.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (0..^(♯‘𝑅))) |
11 | | elfzoelz 12765 |
. . . . . . 7
⊢ (𝑋 ∈
(0..^(♯‘𝑅))
→ 𝑋 ∈
ℤ) |
12 | 10, 11 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℤ) |
13 | 12 | zcnd 11811 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ ℂ) |
14 | 9, 13 | addcomd 10557 |
. . . 4
⊢ (𝜑 → (𝐹 + 𝑋) = (𝑋 + 𝐹)) |
15 | | nn0uz 12004 |
. . . . . . . . 9
⊢
ℕ0 = (ℤ≥‘0) |
16 | 8, 15 | syl6eleq 2916 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈
(ℤ≥‘0)) |
17 | | eluzfz1 12641 |
. . . . . . . 8
⊢ (𝐹 ∈
(ℤ≥‘0) → 0 ∈ (0...𝐹)) |
18 | 16, 17 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 0 ∈ (0...𝐹)) |
19 | | elfzuz3 12632 |
. . . . . . . . . 10
⊢ (𝑇 ∈
(0...(♯‘𝑆))
→ (♯‘𝑆)
∈ (ℤ≥‘𝑇)) |
20 | 3, 19 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝑆) ∈
(ℤ≥‘𝑇)) |
21 | | elfzuz3 12632 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (0...𝑇) → 𝑇 ∈ (ℤ≥‘𝐹)) |
22 | 2, 21 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑇 ∈ (ℤ≥‘𝐹)) |
23 | | uztrn 11985 |
. . . . . . . . 9
⊢
(((♯‘𝑆)
∈ (ℤ≥‘𝑇) ∧ 𝑇 ∈ (ℤ≥‘𝐹)) → (♯‘𝑆) ∈
(ℤ≥‘𝐹)) |
24 | 20, 22, 23 | syl2anc 581 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝑆) ∈
(ℤ≥‘𝐹)) |
25 | | elfzuzb 12629 |
. . . . . . . 8
⊢ (𝐹 ∈
(0...(♯‘𝑆))
↔ (𝐹 ∈
(ℤ≥‘0) ∧ (♯‘𝑆) ∈ (ℤ≥‘𝐹))) |
26 | 16, 24, 25 | sylanbrc 580 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ (0...(♯‘𝑆))) |
27 | | swrdlen 13709 |
. . . . . . 7
⊢ ((𝑆 ∈ Word 𝐴 ∧ 0 ∈ (0...𝐹) ∧ 𝐹 ∈ (0...(♯‘𝑆))) → (♯‘(𝑆 substr 〈0, 𝐹〉)) = (𝐹 − 0)) |
28 | 1, 18, 26, 27 | syl3anc 1496 |
. . . . . 6
⊢ (𝜑 → (♯‘(𝑆 substr 〈0, 𝐹〉)) = (𝐹 − 0)) |
29 | 9 | subid1d 10702 |
. . . . . 6
⊢ (𝜑 → (𝐹 − 0) = 𝐹) |
30 | 28, 29 | eqtrd 2861 |
. . . . 5
⊢ (𝜑 → (♯‘(𝑆 substr 〈0, 𝐹〉)) = 𝐹) |
31 | 30 | oveq2d 6921 |
. . . 4
⊢ (𝜑 → (𝑋 + (♯‘(𝑆 substr 〈0, 𝐹〉))) = (𝑋 + 𝐹)) |
32 | 14, 31 | eqtr4d 2864 |
. . 3
⊢ (𝜑 → (𝐹 + 𝑋) = (𝑋 + (♯‘(𝑆 substr 〈0, 𝐹〉)))) |
33 | 6, 32 | fveq12d 6440 |
. 2
⊢ (𝜑 → ((𝑆 spliceOLD 〈𝐹, 𝑇, 𝑅〉)‘(𝐹 + 𝑋)) = ((((𝑆 substr 〈0, 𝐹〉) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))‘(𝑋 + (♯‘(𝑆 substr 〈0, 𝐹〉))))) |
34 | | swrdcl 13705 |
. . . . 5
⊢ (𝑆 ∈ Word 𝐴 → (𝑆 substr 〈0, 𝐹〉) ∈ Word 𝐴) |
35 | 1, 34 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑆 substr 〈0, 𝐹〉) ∈ Word 𝐴) |
36 | | ccatcl 13634 |
. . . 4
⊢ (((𝑆 substr 〈0, 𝐹〉) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴) → ((𝑆 substr 〈0, 𝐹〉) ++ 𝑅) ∈ Word 𝐴) |
37 | 35, 4, 36 | syl2anc 581 |
. . 3
⊢ (𝜑 → ((𝑆 substr 〈0, 𝐹〉) ++ 𝑅) ∈ Word 𝐴) |
38 | | swrdcl 13705 |
. . . 4
⊢ (𝑆 ∈ Word 𝐴 → (𝑆 substr 〈𝑇, (♯‘𝑆)〉) ∈ Word 𝐴) |
39 | 1, 38 | syl 17 |
. . 3
⊢ (𝜑 → (𝑆 substr 〈𝑇, (♯‘𝑆)〉) ∈ Word 𝐴) |
40 | | 0nn0 11635 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
41 | | nn0addcl 11655 |
. . . . . . . 8
⊢ ((0
∈ ℕ0 ∧ 𝐹 ∈ ℕ0) → (0 +
𝐹) ∈
ℕ0) |
42 | 40, 8, 41 | sylancr 583 |
. . . . . . 7
⊢ (𝜑 → (0 + 𝐹) ∈
ℕ0) |
43 | | fzoss1 12790 |
. . . . . . . 8
⊢ ((0 +
𝐹) ∈
(ℤ≥‘0) → ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)) ⊆ (0..^((♯‘𝑅) + 𝐹))) |
44 | 43, 15 | eleq2s 2924 |
. . . . . . 7
⊢ ((0 +
𝐹) ∈
ℕ0 → ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)) ⊆ (0..^((♯‘𝑅) + 𝐹))) |
45 | 42, 44 | syl 17 |
. . . . . 6
⊢ (𝜑 → ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)) ⊆ (0..^((♯‘𝑅) + 𝐹))) |
46 | | ccatlen 13635 |
. . . . . . . . 9
⊢ (((𝑆 substr 〈0, 𝐹〉) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴) → (♯‘((𝑆 substr 〈0, 𝐹〉) ++ 𝑅)) = ((♯‘(𝑆 substr 〈0, 𝐹〉)) + (♯‘𝑅))) |
47 | 35, 4, 46 | syl2anc 581 |
. . . . . . . 8
⊢ (𝜑 → (♯‘((𝑆 substr 〈0, 𝐹〉) ++ 𝑅)) = ((♯‘(𝑆 substr 〈0, 𝐹〉)) + (♯‘𝑅))) |
48 | 30 | oveq1d 6920 |
. . . . . . . 8
⊢ (𝜑 → ((♯‘(𝑆 substr 〈0, 𝐹〉)) + (♯‘𝑅)) = (𝐹 + (♯‘𝑅))) |
49 | | wrdfin 13592 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Word 𝐴 → 𝑅 ∈ Fin) |
50 | 4, 49 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ Fin) |
51 | | hashcl 13437 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Fin →
(♯‘𝑅) ∈
ℕ0) |
52 | 50, 51 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (♯‘𝑅) ∈
ℕ0) |
53 | 52 | nn0cnd 11680 |
. . . . . . . . 9
⊢ (𝜑 → (♯‘𝑅) ∈
ℂ) |
54 | 9, 53 | addcomd 10557 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 + (♯‘𝑅)) = ((♯‘𝑅) + 𝐹)) |
55 | 47, 48, 54 | 3eqtrd 2865 |
. . . . . . 7
⊢ (𝜑 → (♯‘((𝑆 substr 〈0, 𝐹〉) ++ 𝑅)) = ((♯‘𝑅) + 𝐹)) |
56 | 55 | oveq2d 6921 |
. . . . . 6
⊢ (𝜑 →
(0..^(♯‘((𝑆
substr 〈0, 𝐹〉) ++
𝑅))) =
(0..^((♯‘𝑅) +
𝐹))) |
57 | 45, 56 | sseqtr4d 3867 |
. . . . 5
⊢ (𝜑 → ((0 + 𝐹)..^((♯‘𝑅) + 𝐹)) ⊆ (0..^(♯‘((𝑆 substr 〈0, 𝐹〉) ++ 𝑅)))) |
58 | 8 | nn0zd 11808 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ ℤ) |
59 | | fzoaddel 12816 |
. . . . . 6
⊢ ((𝑋 ∈
(0..^(♯‘𝑅))
∧ 𝐹 ∈ ℤ)
→ (𝑋 + 𝐹) ∈ ((0 + 𝐹)..^((♯‘𝑅) + 𝐹))) |
60 | 10, 58, 59 | syl2anc 581 |
. . . . 5
⊢ (𝜑 → (𝑋 + 𝐹) ∈ ((0 + 𝐹)..^((♯‘𝑅) + 𝐹))) |
61 | 57, 60 | sseldd 3828 |
. . . 4
⊢ (𝜑 → (𝑋 + 𝐹) ∈ (0..^(♯‘((𝑆 substr 〈0, 𝐹〉) ++ 𝑅)))) |
62 | 31, 61 | eqeltrd 2906 |
. . 3
⊢ (𝜑 → (𝑋 + (♯‘(𝑆 substr 〈0, 𝐹〉))) ∈ (0..^(♯‘((𝑆 substr 〈0, 𝐹〉) ++ 𝑅)))) |
63 | | ccatval1 13637 |
. . 3
⊢ ((((𝑆 substr 〈0, 𝐹〉) ++ 𝑅) ∈ Word 𝐴 ∧ (𝑆 substr 〈𝑇, (♯‘𝑆)〉) ∈ Word 𝐴 ∧ (𝑋 + (♯‘(𝑆 substr 〈0, 𝐹〉))) ∈ (0..^(♯‘((𝑆 substr 〈0, 𝐹〉) ++ 𝑅)))) → ((((𝑆 substr 〈0, 𝐹〉) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))‘(𝑋 + (♯‘(𝑆 substr 〈0, 𝐹〉)))) = (((𝑆 substr 〈0, 𝐹〉) ++ 𝑅)‘(𝑋 + (♯‘(𝑆 substr 〈0, 𝐹〉))))) |
64 | 37, 39, 62, 63 | syl3anc 1496 |
. 2
⊢ (𝜑 → ((((𝑆 substr 〈0, 𝐹〉) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))‘(𝑋 + (♯‘(𝑆 substr 〈0, 𝐹〉)))) = (((𝑆 substr 〈0, 𝐹〉) ++ 𝑅)‘(𝑋 + (♯‘(𝑆 substr 〈0, 𝐹〉))))) |
65 | | ccatval3 13639 |
. . 3
⊢ (((𝑆 substr 〈0, 𝐹〉) ∈ Word 𝐴 ∧ 𝑅 ∈ Word 𝐴 ∧ 𝑋 ∈ (0..^(♯‘𝑅))) → (((𝑆 substr 〈0, 𝐹〉) ++ 𝑅)‘(𝑋 + (♯‘(𝑆 substr 〈0, 𝐹〉)))) = (𝑅‘𝑋)) |
66 | 35, 4, 10, 65 | syl3anc 1496 |
. 2
⊢ (𝜑 → (((𝑆 substr 〈0, 𝐹〉) ++ 𝑅)‘(𝑋 + (♯‘(𝑆 substr 〈0, 𝐹〉)))) = (𝑅‘𝑋)) |
67 | 33, 64, 66 | 3eqtrd 2865 |
1
⊢ (𝜑 → ((𝑆 spliceOLD 〈𝐹, 𝑇, 𝑅〉)‘(𝐹 + 𝑋)) = (𝑅‘𝑋)) |