Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  splidOLD Structured version   Visualization version   GIF version

Theorem splidOLD 13865
 Description: Obsolete proof of splid 13864 as of 12-Oct-2022. (Contributed by Stefan O'Rear, 20-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
splidOLD ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 spliceOLD ⟨𝑋, 𝑌, (𝑆 substr ⟨𝑋, 𝑌⟩)⟩) = 𝑆)

Proof of Theorem splidOLD
StepHypRef Expression
1 ovex 6937 . . 3 (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ V
2 splvalOLD 13861 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)) ∧ (𝑆 substr ⟨𝑋, 𝑌⟩) ∈ V)) → (𝑆 spliceOLD ⟨𝑋, 𝑌, (𝑆 substr ⟨𝑋, 𝑌⟩)⟩) = (((𝑆 substr ⟨0, 𝑋⟩) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩)))
31, 2mp3anr3 1588 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 spliceOLD ⟨𝑋, 𝑌, (𝑆 substr ⟨𝑋, 𝑌⟩)⟩) = (((𝑆 substr ⟨0, 𝑋⟩) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩)))
4 simpl 476 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → 𝑆 ∈ Word 𝐴)
5 elfzuz 12631 . . . . . . 7 (𝑋 ∈ (0...𝑌) → 𝑋 ∈ (ℤ‘0))
65ad2antrl 719 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → 𝑋 ∈ (ℤ‘0))
7 eluzfz1 12641 . . . . . 6 (𝑋 ∈ (ℤ‘0) → 0 ∈ (0...𝑋))
86, 7syl 17 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → 0 ∈ (0...𝑋))
9 simprl 787 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → 𝑋 ∈ (0...𝑌))
10 simprr 789 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (0...(♯‘𝑆)))
11 ccatswrd 13746 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (0 ∈ (0...𝑋) ∧ 𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨0, 𝑋⟩) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) = (𝑆 substr ⟨0, 𝑌⟩))
124, 8, 9, 10, 11syl13anc 1495 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨0, 𝑋⟩) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) = (𝑆 substr ⟨0, 𝑌⟩))
1312oveq1d 6920 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (((𝑆 substr ⟨0, 𝑋⟩) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩)) = ((𝑆 substr ⟨0, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩)))
14 elfzuz 12631 . . . . . . 7 (𝑌 ∈ (0...(♯‘𝑆)) → 𝑌 ∈ (ℤ‘0))
1514ad2antll 720 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → 𝑌 ∈ (ℤ‘0))
16 eluzfz1 12641 . . . . . 6 (𝑌 ∈ (ℤ‘0) → 0 ∈ (0...𝑌))
1715, 16syl 17 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → 0 ∈ (0...𝑌))
18 elfzuz2 12639 . . . . . . 7 (𝑌 ∈ (0...(♯‘𝑆)) → (♯‘𝑆) ∈ (ℤ‘0))
1918ad2antll 720 . . . . . 6 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (♯‘𝑆) ∈ (ℤ‘0))
20 eluzfz2 12642 . . . . . 6 ((♯‘𝑆) ∈ (ℤ‘0) → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
2119, 20syl 17 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (♯‘𝑆) ∈ (0...(♯‘𝑆)))
22 ccatswrd 13746 . . . . 5 ((𝑆 ∈ Word 𝐴 ∧ (0 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)) ∧ (♯‘𝑆) ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨0, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩)) = (𝑆 substr ⟨0, (♯‘𝑆)⟩))
234, 17, 10, 21, 22syl13anc 1495 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨0, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩)) = (𝑆 substr ⟨0, (♯‘𝑆)⟩))
24 swrdidOLD 13715 . . . . 5 (𝑆 ∈ Word 𝐴 → (𝑆 substr ⟨0, (♯‘𝑆)⟩) = 𝑆)
2524adantr 474 . . . 4 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 substr ⟨0, (♯‘𝑆)⟩) = 𝑆)
2623, 25eqtrd 2861 . . 3 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → ((𝑆 substr ⟨0, 𝑌⟩) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩)) = 𝑆)
2713, 26eqtrd 2861 . 2 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (((𝑆 substr ⟨0, 𝑋⟩) ++ (𝑆 substr ⟨𝑋, 𝑌⟩)) ++ (𝑆 substr ⟨𝑌, (♯‘𝑆)⟩)) = 𝑆)
283, 27eqtrd 2861 1 ((𝑆 ∈ Word 𝐴 ∧ (𝑋 ∈ (0...𝑌) ∧ 𝑌 ∈ (0...(♯‘𝑆)))) → (𝑆 spliceOLD ⟨𝑋, 𝑌, (𝑆 substr ⟨𝑋, 𝑌⟩)⟩) = 𝑆)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 386   = wceq 1656   ∈ wcel 2164  Vcvv 3414  ⟨cop 4403  ⟨cotp 4405  ‘cfv 6123  (class class class)co 6905  0cc0 10252  ℤ≥cuz 11968  ...cfz 12619  ♯chash 13410  Word cword 13574   ++ cconcat 13630   substr csubstr 13700   spliceOLD cspliceold 13856 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-ot 4406  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-hash 13411  df-word 13575  df-concat 13631  df-substr 13701  df-spliceOLD 13858 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator