Step | Hyp | Ref
| Expression |
1 | | df-spliceOLD 13819 |
. . 3
⊢
spliceOLD = (𝑠 ∈ V,
𝑏 ∈ V ↦ (((𝑠 substr 〈0, (1st
‘(1st ‘𝑏))〉) ++ (2nd ‘𝑏)) ++ (𝑠 substr 〈(2nd
‘(1st ‘𝑏)), (♯‘𝑠)〉))) |
2 | 1 | a1i 11 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → spliceOLD = (𝑠 ∈ V, 𝑏 ∈ V ↦ (((𝑠 substr 〈0, (1st
‘(1st ‘𝑏))〉) ++ (2nd ‘𝑏)) ++ (𝑠 substr 〈(2nd
‘(1st ‘𝑏)), (♯‘𝑠)〉)))) |
3 | | simprl 788 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉)) → 𝑠 = 𝑆) |
4 | | 2fveq3 6415 |
. . . . . . . . 9
⊢ (𝑏 = 〈𝐹, 𝑇, 𝑅〉 → (1st
‘(1st ‘𝑏)) = (1st ‘(1st
‘〈𝐹, 𝑇, 𝑅〉))) |
5 | 4 | adantl 474 |
. . . . . . . 8
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉) → (1st
‘(1st ‘𝑏)) = (1st ‘(1st
‘〈𝐹, 𝑇, 𝑅〉))) |
6 | | ot1stg 7414 |
. . . . . . . . 9
⊢ ((𝐹 ∈ ℕ0
∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) → (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)) = 𝐹) |
7 | 6 | adantl 474 |
. . . . . . . 8
⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (1st
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)) = 𝐹) |
8 | 5, 7 | sylan9eqr 2854 |
. . . . . . 7
⊢ (((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉)) → (1st
‘(1st ‘𝑏)) = 𝐹) |
9 | 8 | opeq2d 4599 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉)) → 〈0, (1st
‘(1st ‘𝑏))〉 = 〈0, 𝐹〉) |
10 | 3, 9 | oveq12d 6895 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉)) → (𝑠 substr 〈0, (1st
‘(1st ‘𝑏))〉) = (𝑆 substr 〈0, 𝐹〉)) |
11 | | simp1 1167 |
. . . . . . . 8
⊢ ((𝐹 ∈ ℕ0
∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) → 𝐹 ∈
ℕ0) |
12 | 11 | anim2i 611 |
. . . . . . 7
⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (𝑆 ∈ 𝑉 ∧ 𝐹 ∈
ℕ0)) |
13 | 12 | adantr 473 |
. . . . . 6
⊢ (((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉)) → (𝑆 ∈ 𝑉 ∧ 𝐹 ∈
ℕ0)) |
14 | | pfxval 13713 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑉 ∧ 𝐹 ∈ ℕ0) → (𝑆 prefix 𝐹) = (𝑆 substr 〈0, 𝐹〉)) |
15 | 13, 14 | syl 17 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉)) → (𝑆 prefix 𝐹) = (𝑆 substr 〈0, 𝐹〉)) |
16 | 10, 15 | eqtr4d 2835 |
. . . 4
⊢ (((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉)) → (𝑠 substr 〈0, (1st
‘(1st ‘𝑏))〉) = (𝑆 prefix 𝐹)) |
17 | | fveq2 6410 |
. . . . . 6
⊢ (𝑏 = 〈𝐹, 𝑇, 𝑅〉 → (2nd ‘𝑏) = (2nd
‘〈𝐹, 𝑇, 𝑅〉)) |
18 | 17 | adantl 474 |
. . . . 5
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉) → (2nd ‘𝑏) = (2nd
‘〈𝐹, 𝑇, 𝑅〉)) |
19 | | ot3rdg 7416 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑌 → (2nd ‘〈𝐹, 𝑇, 𝑅〉) = 𝑅) |
20 | 19 | 3ad2ant3 1166 |
. . . . . 6
⊢ ((𝐹 ∈ ℕ0
∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) → (2nd ‘〈𝐹, 𝑇, 𝑅〉) = 𝑅) |
21 | 20 | adantl 474 |
. . . . 5
⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (2nd ‘〈𝐹, 𝑇, 𝑅〉) = 𝑅) |
22 | 18, 21 | sylan9eqr 2854 |
. . . 4
⊢ (((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉)) → (2nd ‘𝑏) = 𝑅) |
23 | 16, 22 | oveq12d 6895 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉)) → ((𝑠 substr 〈0, (1st
‘(1st ‘𝑏))〉) ++ (2nd ‘𝑏)) = ((𝑆 prefix 𝐹) ++ 𝑅)) |
24 | | 2fveq3 6415 |
. . . . . . 7
⊢ (𝑏 = 〈𝐹, 𝑇, 𝑅〉 → (2nd
‘(1st ‘𝑏)) = (2nd ‘(1st
‘〈𝐹, 𝑇, 𝑅〉))) |
25 | 24 | adantl 474 |
. . . . . 6
⊢ ((𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉) → (2nd
‘(1st ‘𝑏)) = (2nd ‘(1st
‘〈𝐹, 𝑇, 𝑅〉))) |
26 | | ot2ndg 7415 |
. . . . . . 7
⊢ ((𝐹 ∈ ℕ0
∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌) → (2nd
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)) = 𝑇) |
27 | 26 | adantl 474 |
. . . . . 6
⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (2nd
‘(1st ‘〈𝐹, 𝑇, 𝑅〉)) = 𝑇) |
28 | 25, 27 | sylan9eqr 2854 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉)) → (2nd
‘(1st ‘𝑏)) = 𝑇) |
29 | 3 | fveq2d 6414 |
. . . . 5
⊢ (((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉)) → (♯‘𝑠) = (♯‘𝑆)) |
30 | 28, 29 | opeq12d 4600 |
. . . 4
⊢ (((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉)) → 〈(2nd
‘(1st ‘𝑏)), (♯‘𝑠)〉 = 〈𝑇, (♯‘𝑆)〉) |
31 | 3, 30 | oveq12d 6895 |
. . 3
⊢ (((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉)) → (𝑠 substr 〈(2nd
‘(1st ‘𝑏)), (♯‘𝑠)〉) = (𝑆 substr 〈𝑇, (♯‘𝑆)〉)) |
32 | 23, 31 | oveq12d 6895 |
. 2
⊢ (((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) ∧ (𝑠 = 𝑆 ∧ 𝑏 = 〈𝐹, 𝑇, 𝑅〉)) → (((𝑠 substr 〈0, (1st
‘(1st ‘𝑏))〉) ++ (2nd ‘𝑏)) ++ (𝑠 substr 〈(2nd
‘(1st ‘𝑏)), (♯‘𝑠)〉)) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))) |
33 | | elex 3399 |
. . 3
⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) |
34 | 33 | adantr 473 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → 𝑆 ∈ V) |
35 | | otex 5123 |
. . 3
⊢
〈𝐹, 𝑇, 𝑅〉 ∈ V |
36 | 35 | a1i 11 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → 〈𝐹, 𝑇, 𝑅〉 ∈ V) |
37 | | ovexd 6911 |
. 2
⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉)) ∈ V) |
38 | 2, 32, 34, 36, 37 | ovmpt2d 7021 |
1
⊢ ((𝑆 ∈ 𝑉 ∧ (𝐹 ∈ ℕ0 ∧ 𝑇 ∈ 𝑋 ∧ 𝑅 ∈ 𝑌)) → (𝑆 spliceOLD 〈𝐹, 𝑇, 𝑅〉) = (((𝑆 prefix 𝐹) ++ 𝑅) ++ (𝑆 substr 〈𝑇, (♯‘𝑆)〉))) |