![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssdifsnOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of ssdifsn 4454 as of 31-May-2022. (Contributed by Emmett Weisz, 7-Jul-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
ssdifsnOLD | ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 3741 | . . . 4 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ (𝐵 ∖ {𝐶})) | |
2 | eldifsn 4453 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∖ {𝐶}) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐶)) | |
3 | 2 | ralbii 3129 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ (𝐵 ∖ {𝐶}) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐶)) |
4 | 1, 3 | bitri 264 | . . 3 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐶)) |
5 | r19.26 3212 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 𝐶) ↔ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶)) | |
6 | 4, 5 | bitri 264 | . 2 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶)) |
7 | dfss3 3741 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵) | |
8 | 7 | bicomi 214 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ 𝐴 ⊆ 𝐵) |
9 | neirr 2952 | . . . . 5 ⊢ ¬ 𝐶 ≠ 𝐶 | |
10 | neeq1 3005 | . . . . . 6 ⊢ (𝑥 = 𝐶 → (𝑥 ≠ 𝐶 ↔ 𝐶 ≠ 𝐶)) | |
11 | 10 | rspccv 3457 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶 → (𝐶 ∈ 𝐴 → 𝐶 ≠ 𝐶)) |
12 | 9, 11 | mtoi 190 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶 → ¬ 𝐶 ∈ 𝐴) |
13 | nelelne 3041 | . . . . 5 ⊢ (¬ 𝐶 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ≠ 𝐶)) | |
14 | 13 | ralrimiv 3114 | . . . 4 ⊢ (¬ 𝐶 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶) |
15 | 12, 14 | impbii 199 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶 ↔ ¬ 𝐶 ∈ 𝐴) |
16 | 8, 15 | anbi12i 612 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝑥 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≠ 𝐶) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
17 | 6, 16 | bitri 264 | 1 ⊢ (𝐴 ⊆ (𝐵 ∖ {𝐶}) ↔ (𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 382 ∈ wcel 2145 ≠ wne 2943 ∀wral 3061 ∖ cdif 3720 ⊆ wss 3723 {csn 4316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-v 3353 df-dif 3726 df-in 3730 df-ss 3737 df-sn 4317 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |