![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrd0fvOLD | Structured version Visualization version GIF version |
Description: Obsolete version of pfxfv 13724 as of 12-Oct-2022. (Contributed by Alexander van der Vekens, 16-Jun-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
swrd0fvOLD | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 substr 〈0, 𝐿〉)‘𝐼) = (𝑊‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1167 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 𝑊 ∈ Word 𝑉) | |
2 | elfznn0 12686 | . . . . 5 ⊢ (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℕ0) | |
3 | 0elfz 12690 | . . . . 5 ⊢ (𝐿 ∈ ℕ0 → 0 ∈ (0...𝐿)) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝐿 ∈ (0...(♯‘𝑊)) → 0 ∈ (0...𝐿)) |
5 | 4 | 3ad2ant2 1165 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 0 ∈ (0...𝐿)) |
6 | simp2 1168 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 𝐿 ∈ (0...(♯‘𝑊))) | |
7 | elfzelz 12595 | . . . . . . . . 9 ⊢ (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℤ) | |
8 | 7 | zcnd 11772 | . . . . . . . 8 ⊢ (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 ∈ ℂ) |
9 | subid1 10594 | . . . . . . . . 9 ⊢ (𝐿 ∈ ℂ → (𝐿 − 0) = 𝐿) | |
10 | 9 | eqcomd 2806 | . . . . . . . 8 ⊢ (𝐿 ∈ ℂ → 𝐿 = (𝐿 − 0)) |
11 | 8, 10 | syl 17 | . . . . . . 7 ⊢ (𝐿 ∈ (0...(♯‘𝑊)) → 𝐿 = (𝐿 − 0)) |
12 | 11 | adantl 474 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → 𝐿 = (𝐿 − 0)) |
13 | 12 | oveq2d 6895 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (0..^𝐿) = (0..^(𝐿 − 0))) |
14 | 13 | eleq2d 2865 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝐼 ∈ (0..^𝐿) ↔ 𝐼 ∈ (0..^(𝐿 − 0)))) |
15 | 14 | biimp3a 1594 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → 𝐼 ∈ (0..^(𝐿 − 0))) |
16 | swrdfv 13673 | . . 3 ⊢ (((𝑊 ∈ Word 𝑉 ∧ 0 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) ∧ 𝐼 ∈ (0..^(𝐿 − 0))) → ((𝑊 substr 〈0, 𝐿〉)‘𝐼) = (𝑊‘(𝐼 + 0))) | |
17 | 1, 5, 6, 15, 16 | syl31anc 1493 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 substr 〈0, 𝐿〉)‘𝐼) = (𝑊‘(𝐼 + 0))) |
18 | elfzoelz 12724 | . . . . . 6 ⊢ (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ ℤ) | |
19 | 18 | zcnd 11772 | . . . . 5 ⊢ (𝐼 ∈ (0..^𝐿) → 𝐼 ∈ ℂ) |
20 | 19 | addid1d 10527 | . . . 4 ⊢ (𝐼 ∈ (0..^𝐿) → (𝐼 + 0) = 𝐼) |
21 | 20 | 3ad2ant3 1166 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → (𝐼 + 0) = 𝐼) |
22 | 21 | fveq2d 6416 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → (𝑊‘(𝐼 + 0)) = (𝑊‘𝐼)) |
23 | 17, 22 | eqtrd 2834 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^𝐿)) → ((𝑊 substr 〈0, 𝐿〉)‘𝐼) = (𝑊‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 〈cop 4375 ‘cfv 6102 (class class class)co 6879 ℂcc 10223 0cc0 10225 + caddc 10228 − cmin 10557 ℕ0cn0 11579 ...cfz 12579 ..^cfzo 12719 ♯chash 13369 Word cword 13533 substr csubstr 13663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-card 9052 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-n0 11580 df-z 11666 df-uz 11930 df-fz 12580 df-fzo 12720 df-hash 13370 df-word 13534 df-substr 13664 |
This theorem is referenced by: swrd0fv0OLD 13692 swrdtrcfvOLD 13693 swrd0fvlswOLD 13695 swrdeqOLD 13696 wwlksm1edgOLD 27138 wwlksnredOLD 27160 clwwlkinwwlkOLD 27348 clwwlkfOLD 27355 wwlksubclwwlkOLD 27375 clwlksfclwwlkOLD 27402 dlwwlknonclwlknonf1olem1OLD 27734 |
Copyright terms: Public domain | W3C validator |