Proof of Theorem swrdccat3OLD
Step | Hyp | Ref
| Expression |
1 | | simpll 785 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁 ≤ 𝐿) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
2 | | simplrl 797 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁 ≤ 𝐿) → 𝑀 ∈ (0...𝑁)) |
3 | | lencl 13594 |
. . . . . . . . 9
⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈
ℕ0) |
4 | | elfznn0 12728 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → 𝑁 ∈
ℕ0) |
5 | 4 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) → 𝑁 ∈
ℕ0) |
6 | 5 | adantr 474 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁 ≤ 𝐿) → 𝑁 ∈
ℕ0) |
7 | | simplr 787 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁 ≤ 𝐿) → (♯‘𝐴) ∈
ℕ0) |
8 | | swrdccatin2.l |
. . . . . . . . . . . . . . 15
⊢ 𝐿 = (♯‘𝐴) |
9 | 8 | breq2i 4882 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ≤ 𝐿 ↔ 𝑁 ≤ (♯‘𝐴)) |
10 | 9 | biimpi 208 |
. . . . . . . . . . . . 13
⊢ (𝑁 ≤ 𝐿 → 𝑁 ≤ (♯‘𝐴)) |
11 | 10 | adantl 475 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁 ≤ 𝐿) → 𝑁 ≤ (♯‘𝐴)) |
12 | | elfz2nn0 12726 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈
(0...(♯‘𝐴))
↔ (𝑁 ∈
ℕ0 ∧ (♯‘𝐴) ∈ ℕ0 ∧ 𝑁 ≤ (♯‘𝐴))) |
13 | 6, 7, 11, 12 | syl3anbrc 1449 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁 ≤ 𝐿) → 𝑁 ∈ (0...(♯‘𝐴))) |
14 | 13 | exp31 412 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (𝑁 ≤ 𝐿 → 𝑁 ∈ (0...(♯‘𝐴))))) |
15 | 14 | adantl 475 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐴) ∈ ℕ0
→ (𝑁 ≤ 𝐿 → 𝑁 ∈ (0...(♯‘𝐴))))) |
16 | 3, 15 | syl5com 31 |
. . . . . . . 8
⊢ (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝑁 ≤ 𝐿 → 𝑁 ∈ (0...(♯‘𝐴))))) |
17 | 16 | adantr 474 |
. . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝑁 ≤ 𝐿 → 𝑁 ∈ (0...(♯‘𝐴))))) |
18 | 17 | imp 397 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (𝑁 ≤ 𝐿 → 𝑁 ∈ (0...(♯‘𝐴)))) |
19 | 18 | imp 397 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁 ≤ 𝐿) → 𝑁 ∈ (0...(♯‘𝐴))) |
20 | 2, 19 | jca 509 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁 ≤ 𝐿) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴)))) |
21 | | swrdccatin1 13822 |
. . . 4
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐴 substr 〈𝑀, 𝑁〉))) |
22 | 1, 20, 21 | sylc 65 |
. . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁 ≤ 𝐿) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐴 substr 〈𝑀, 𝑁〉)) |
23 | | simp1l 1260 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
24 | 8 | eleq1i 2898 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ ℕ0
↔ (♯‘𝐴)
∈ ℕ0) |
25 | | elfz2nn0 12726 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0
∧ 𝑀 ≤ 𝑁)) |
26 | | nn0z 11729 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℤ) |
27 | 26 | adantl 475 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
→ 𝐿 ∈
ℤ) |
28 | | nn0z 11729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
29 | 28 | 3ad2ant2 1170 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → 𝑁 ∈
ℤ) |
30 | 29 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
→ 𝑁 ∈
ℤ) |
31 | | nn0z 11729 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℤ) |
32 | 31 | 3ad2ant1 1169 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → 𝑀 ∈
ℤ) |
33 | 32 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
→ 𝑀 ∈
ℤ) |
34 | 27, 30, 33 | 3jca 1164 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
→ (𝐿 ∈ ℤ
∧ 𝑁 ∈ ℤ
∧ 𝑀 ∈
ℤ)) |
35 | 34 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
∧ 𝐿 ≤ 𝑀) → (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ)) |
36 | | simpl3 1252 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
→ 𝑀 ≤ 𝑁) |
37 | 36 | anim1i 610 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
∧ 𝐿 ≤ 𝑀) → (𝑀 ≤ 𝑁 ∧ 𝐿 ≤ 𝑀)) |
38 | 37 | ancomd 455 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
∧ 𝐿 ≤ 𝑀) → (𝐿 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁)) |
39 | | elfz2 12627 |
. . . . . . . . . . . . . . . 16
⊢ (𝑀 ∈ (𝐿...𝑁) ↔ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁))) |
40 | 35, 38, 39 | sylanbrc 580 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) ∧ 𝐿 ∈ ℕ0)
∧ 𝐿 ≤ 𝑀) → 𝑀 ∈ (𝐿...𝑁)) |
41 | 40 | exp31 412 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → (𝐿 ∈ ℕ0
→ (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
42 | 25, 41 | sylbi 209 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ (0...𝑁) → (𝐿 ∈ ℕ0 → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
43 | 42 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℕ0 → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
44 | 43 | com12 32 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ ℕ0
→ ((𝑀 ∈
(0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
45 | 24, 44 | sylbir 227 |
. . . . . . . . . 10
⊢
((♯‘𝐴)
∈ ℕ0 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
46 | 3, 45 | syl 17 |
. . . . . . . . 9
⊢ (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
47 | 46 | adantr 474 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
48 | 47 | imp 397 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁))) |
49 | 48 | a1d 25 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → (𝐿 ≤ 𝑀 → 𝑀 ∈ (𝐿...𝑁)))) |
50 | 49 | 3imp 1143 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀) → 𝑀 ∈ (𝐿...𝑁)) |
51 | | elfz2nn0 12726 |
. . . . . . . . . . . 12
⊢ (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) |
52 | | nn0z 11729 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝐴)
∈ ℕ0 → (♯‘𝐴) ∈ ℤ) |
53 | 8, 52 | syl5eqel 2911 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐴)
∈ ℕ0 → 𝐿 ∈ ℤ) |
54 | 53 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢
(((♯‘𝐴)
∈ ℕ0 ∧ ¬ 𝑁 ≤ 𝐿) → 𝐿 ∈ ℤ) |
55 | 54 | adantl 475 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) ∧
((♯‘𝐴) ∈
ℕ0 ∧ ¬ 𝑁 ≤ 𝐿)) → 𝐿 ∈ ℤ) |
56 | | nn0z 11729 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 + (♯‘𝐵)) ∈ ℕ0
→ (𝐿 +
(♯‘𝐵)) ∈
ℤ) |
57 | 56 | 3ad2ant2 1170 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) →
(𝐿 + (♯‘𝐵)) ∈
ℤ) |
58 | 57 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) ∧
((♯‘𝐴) ∈
ℕ0 ∧ ¬ 𝑁 ≤ 𝐿)) → (𝐿 + (♯‘𝐵)) ∈ ℤ) |
59 | 28 | 3ad2ant1 1169 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) →
𝑁 ∈
ℤ) |
60 | 59 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) ∧
((♯‘𝐴) ∈
ℕ0 ∧ ¬ 𝑁 ≤ 𝐿)) → 𝑁 ∈ ℤ) |
61 | 55, 58, 60 | 3jca 1164 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) ∧
((♯‘𝐴) ∈
ℕ0 ∧ ¬ 𝑁 ≤ 𝐿)) → (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
62 | 8 | eqcomi 2835 |
. . . . . . . . . . . . . . . . . . 19
⊢
(♯‘𝐴) =
𝐿 |
63 | 62 | eleq1i 2898 |
. . . . . . . . . . . . . . . . . 18
⊢
((♯‘𝐴)
∈ ℕ0 ↔ 𝐿 ∈
ℕ0) |
64 | | nn0re 11629 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℝ) |
65 | | nn0re 11629 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
66 | | ltnle 10437 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐿)) |
67 | 64, 65, 66 | syl2anr 592 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝐿 < 𝑁 ↔ ¬ 𝑁 ≤ 𝐿)) |
68 | 67 | bicomd 215 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (¬ 𝑁 ≤ 𝐿 ↔ 𝐿 < 𝑁)) |
69 | | ltle 10446 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁 → 𝐿 ≤ 𝑁)) |
70 | 64, 65, 69 | syl2anr 592 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝐿 < 𝑁 → 𝐿 ≤ 𝑁)) |
71 | 68, 70 | sylbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (¬ 𝑁 ≤ 𝐿 → 𝐿 ≤ 𝑁)) |
72 | 71 | ex 403 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑁 ∈ ℕ0
→ (𝐿 ∈
ℕ0 → (¬ 𝑁 ≤ 𝐿 → 𝐿 ≤ 𝑁))) |
73 | 63, 72 | syl5bi 234 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈ ℕ0
→ ((♯‘𝐴)
∈ ℕ0 → (¬ 𝑁 ≤ 𝐿 → 𝐿 ≤ 𝑁))) |
74 | 73 | 3ad2ant1 1169 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) →
((♯‘𝐴) ∈
ℕ0 → (¬ 𝑁 ≤ 𝐿 → 𝐿 ≤ 𝑁))) |
75 | 74 | imp32 411 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) ∧
((♯‘𝐴) ∈
ℕ0 ∧ ¬ 𝑁 ≤ 𝐿)) → 𝐿 ≤ 𝑁) |
76 | | simpl3 1252 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) ∧
((♯‘𝐴) ∈
ℕ0 ∧ ¬ 𝑁 ≤ 𝐿)) → 𝑁 ≤ (𝐿 + (♯‘𝐵))) |
77 | 75, 76 | jca 509 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) ∧
((♯‘𝐴) ∈
ℕ0 ∧ ¬ 𝑁 ≤ 𝐿)) → (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) |
78 | | elfz2 12627 |
. . . . . . . . . . . . . 14
⊢ (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ↔ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))))) |
79 | 61, 77, 78 | sylanbrc 580 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) ∧
((♯‘𝐴) ∈
ℕ0 ∧ ¬ 𝑁 ≤ 𝐿)) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
80 | 79 | exp32 413 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) →
((♯‘𝐴) ∈
ℕ0 → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
81 | 51, 80 | sylbi 209 |
. . . . . . . . . . 11
⊢ (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (¬
𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
82 | 81 | adantl 475 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐴) ∈ ℕ0
→ (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
83 | 3, 82 | syl5com 31 |
. . . . . . . . 9
⊢ (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
84 | 83 | adantr 474 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
85 | 84 | imp 397 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
86 | 85 | a1dd 50 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → (𝐿 ≤ 𝑀 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
87 | 86 | 3imp 1143 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
88 | 50, 87 | jca 509 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀) → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
89 | 8 | swrdccatin2 13827 |
. . . 4
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉))) |
90 | 23, 88, 89 | sylc 65 |
. . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ 𝐿 ≤ 𝑀) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉)) |
91 | | simp1l 1260 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ ¬ 𝐿 ≤ 𝑀) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
92 | | nn0re 11629 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℝ) |
93 | 92 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → 𝑀 ∈ ℝ) |
94 | | ltnle 10437 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 ↔ ¬ 𝐿 ≤ 𝑀)) |
95 | 93, 64, 94 | syl2anr 592 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 ∈ ℕ0
∧ (𝑀 ∈
ℕ0 ∧ 𝑁
∈ ℕ0)) → (𝑀 < 𝐿 ↔ ¬ 𝐿 ≤ 𝑀)) |
96 | 95 | bicomd 215 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℕ0
∧ (𝑀 ∈
ℕ0 ∧ 𝑁
∈ ℕ0)) → (¬ 𝐿 ≤ 𝑀 ↔ 𝑀 < 𝐿)) |
97 | | simpll 785 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝑀 < 𝐿) → 𝑀 ∈
ℕ0) |
98 | | simplr 787 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝑀 < 𝐿) → 𝐿 ∈
ℕ0) |
99 | | ltle 10446 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 → 𝑀 ≤ 𝐿)) |
100 | 92, 64, 99 | syl2an 591 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝑀 < 𝐿 → 𝑀 ≤ 𝐿)) |
101 | 100 | imp 397 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝑀 < 𝐿) → 𝑀 ≤ 𝐿) |
102 | | elfz2nn0 12726 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0
∧ 𝑀 ≤ 𝐿)) |
103 | 97, 98, 101, 102 | syl3anbrc 1449 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝑀 < 𝐿) → 𝑀 ∈ (0...𝐿)) |
104 | 103 | exp31 412 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑀 ∈ ℕ0
→ (𝐿 ∈
ℕ0 → (𝑀 < 𝐿 → 𝑀 ∈ (0...𝐿)))) |
105 | 104 | adantr 474 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿 → 𝑀 ∈ (0...𝐿)))) |
106 | 105 | impcom 398 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℕ0
∧ (𝑀 ∈
ℕ0 ∧ 𝑁
∈ ℕ0)) → (𝑀 < 𝐿 → 𝑀 ∈ (0...𝐿))) |
107 | 96, 106 | sylbid 232 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈ ℕ0
∧ (𝑀 ∈
ℕ0 ∧ 𝑁
∈ ℕ0)) → (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿))) |
108 | 107 | expcom 404 |
. . . . . . . . . . . . . 14
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0) → (𝐿 ∈ ℕ0 → (¬
𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
109 | 108 | 3adant3 1168 |
. . . . . . . . . . . . 13
⊢ ((𝑀 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ 𝑀
≤ 𝑁) → (𝐿 ∈ ℕ0
→ (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
110 | 25, 109 | sylbi 209 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (0...𝑁) → (𝐿 ∈ ℕ0 → (¬
𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
111 | 63, 110 | syl5bi 234 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (0...𝑁) → ((♯‘𝐴) ∈ ℕ0 → (¬
𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
112 | 111 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐴) ∈ ℕ0
→ (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
113 | 3, 112 | syl5com 31 |
. . . . . . . . 9
⊢ (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
114 | 113 | adantr 474 |
. . . . . . . 8
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
115 | 114 | imp 397 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿))) |
116 | 115 | a1d 25 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → (¬ 𝐿 ≤ 𝑀 → 𝑀 ∈ (0...𝐿)))) |
117 | 116 | 3imp 1143 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ ¬ 𝐿 ≤ 𝑀) → 𝑀 ∈ (0...𝐿)) |
118 | 65 | 3ad2ant1 1169 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) →
𝑁 ∈
ℝ) |
119 | 66 | bicomd 215 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬
𝑁 ≤ 𝐿 ↔ 𝐿 < 𝑁)) |
120 | 64, 118, 119 | syl2an 591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (¬ 𝑁 ≤ 𝐿 ↔ 𝐿 < 𝑁)) |
121 | 26 | adantr 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → 𝐿 ∈ ℤ) |
122 | 57 | adantl 475 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 + (♯‘𝐵)) ∈ ℤ) |
123 | 59 | adantl 475 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → 𝑁 ∈ ℤ) |
124 | 121, 122,
123 | 3jca 1164 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
125 | 124 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
126 | 64, 118, 69 | syl2an 591 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 < 𝑁 → 𝐿 ≤ 𝑁)) |
127 | 126 | imp 397 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝐿 ≤ 𝑁) |
128 | | simplr3 1285 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝑁 ≤ (𝐿 + (♯‘𝐵))) |
129 | 127, 128 | jca 509 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) |
130 | 125, 129,
78 | sylanbrc 580 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
131 | 130 | ex 403 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 < 𝑁 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
132 | 120, 131 | sylbid 232 |
. . . . . . . . . . . . . . 15
⊢ ((𝐿 ∈ ℕ0
∧ (𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
133 | 132 | ex 403 |
. . . . . . . . . . . . . 14
⊢ (𝐿 ∈ ℕ0
→ ((𝑁 ∈
ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
134 | 63, 133 | sylbi 209 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐴)
∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
135 | 3, 134 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Word 𝑉 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
136 | 135 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0
∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
137 | 136 | com12 32 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ (𝐿 +
(♯‘𝐵)) ∈
ℕ0 ∧ 𝑁
≤ (𝐿 +
(♯‘𝐵))) →
((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
138 | 51, 137 | sylbi 209 |
. . . . . . . . 9
⊢ (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
139 | 138 | adantl 475 |
. . . . . . . 8
⊢ ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
140 | 139 | impcom 398 |
. . . . . . 7
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
141 | 140 | a1dd 50 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁 ≤ 𝐿 → (¬ 𝐿 ≤ 𝑀 → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))) |
142 | 141 | 3imp 1143 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ ¬ 𝐿 ≤ 𝑀) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) |
143 | 117, 142 | jca 509 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ ¬ 𝐿 ≤ 𝑀) → (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) |
144 | 8 | swrdccatin12OLD 13833 |
. . . 4
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 substr 〈0, (𝑁 − 𝐿)〉)))) |
145 | 91, 143, 144 | sylc 65 |
. . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁 ≤ 𝐿 ∧ ¬ 𝐿 ≤ 𝑀) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 substr 〈0, (𝑁 − 𝐿)〉))) |
146 | 22, 90, 145 | 2if2 4360 |
. 2
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = if(𝑁 ≤ 𝐿, (𝐴 substr 〈𝑀, 𝑁〉), if(𝐿 ≤ 𝑀, (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉), ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 substr 〈0, (𝑁 − 𝐿)〉))))) |
147 | 146 | ex 403 |
1
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉) = if(𝑁 ≤ 𝐿, (𝐴 substr 〈𝑀, 𝑁〉), if(𝐿 ≤ 𝑀, (𝐵 substr 〈(𝑀 − 𝐿), (𝑁 − 𝐿)〉), ((𝐴 substr 〈𝑀, 𝐿〉) ++ (𝐵 substr 〈0, (𝑁 − 𝐿)〉)))))) |