Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccat3OLD Structured version   Visualization version   GIF version

Theorem swrdccat3OLD 13835
 Description: Obsolete proof of pfxccat3 13834 as of 12-Oct-2022. (Contributed by Alexander van der Vekens, 30-Mar-2018.) (Revised by Alexander van der Vekens, 28-May-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
swrdccat3OLD ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))))))

Proof of Theorem swrdccat3OLD
StepHypRef Expression
1 simpll 785 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁𝐿) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 simplrl 797 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁𝐿) → 𝑀 ∈ (0...𝑁))
3 lencl 13594 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
4 elfznn0 12728 . . . . . . . . . . . . . 14 (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → 𝑁 ∈ ℕ0)
54adantr 474 . . . . . . . . . . . . 13 ((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) → 𝑁 ∈ ℕ0)
65adantr 474 . . . . . . . . . . . 12 (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁𝐿) → 𝑁 ∈ ℕ0)
7 simplr 787 . . . . . . . . . . . 12 (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁𝐿) → (♯‘𝐴) ∈ ℕ0)
8 swrdccatin2.l . . . . . . . . . . . . . . 15 𝐿 = (♯‘𝐴)
98breq2i 4882 . . . . . . . . . . . . . 14 (𝑁𝐿𝑁 ≤ (♯‘𝐴))
109biimpi 208 . . . . . . . . . . . . 13 (𝑁𝐿𝑁 ≤ (♯‘𝐴))
1110adantl 475 . . . . . . . . . . . 12 (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁𝐿) → 𝑁 ≤ (♯‘𝐴))
12 elfz2nn0 12726 . . . . . . . . . . . 12 (𝑁 ∈ (0...(♯‘𝐴)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝐴) ∈ ℕ0𝑁 ≤ (♯‘𝐴)))
136, 7, 11, 12syl3anbrc 1449 . . . . . . . . . . 11 (((𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ∧ (♯‘𝐴) ∈ ℕ0) ∧ 𝑁𝐿) → 𝑁 ∈ (0...(♯‘𝐴)))
1413exp31 412 . . . . . . . . . 10 (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (𝑁𝐿𝑁 ∈ (0...(♯‘𝐴)))))
1514adantl 475 . . . . . . . . 9 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐴) ∈ ℕ0 → (𝑁𝐿𝑁 ∈ (0...(♯‘𝐴)))))
163, 15syl5com 31 . . . . . . . 8 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿𝑁 ∈ (0...(♯‘𝐴)))))
1716adantr 474 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿𝑁 ∈ (0...(♯‘𝐴)))))
1817imp 397 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (𝑁𝐿𝑁 ∈ (0...(♯‘𝐴))))
1918imp 397 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁𝐿) → 𝑁 ∈ (0...(♯‘𝐴)))
202, 19jca 509 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁𝐿) → (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))))
21 swrdccatin1 13822 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝐴))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩)))
221, 20, 21sylc 65 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ 𝑁𝐿) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐴 substr ⟨𝑀, 𝑁⟩))
23 simp1l 1260 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿𝐿𝑀) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
248eleq1i 2898 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)
25 elfz2nn0 12726 . . . . . . . . . . . . . 14 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
26 nn0z 11729 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℕ0𝐿 ∈ ℤ)
2726adantl 475 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) → 𝐿 ∈ ℤ)
28 nn0z 11729 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
29283ad2ant2 1170 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑁 ∈ ℤ)
3029adantr 474 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) → 𝑁 ∈ ℤ)
31 nn0z 11729 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
32313ad2ant1 1169 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → 𝑀 ∈ ℤ)
3332adantr 474 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) → 𝑀 ∈ ℤ)
3427, 30, 333jca 1164 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) → (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
3534adantr 474 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) ∧ 𝐿𝑀) → (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ))
36 simpl3 1252 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) → 𝑀𝑁)
3736anim1i 610 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) ∧ 𝐿𝑀) → (𝑀𝑁𝐿𝑀))
3837ancomd 455 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) ∧ 𝐿𝑀) → (𝐿𝑀𝑀𝑁))
39 elfz2 12627 . . . . . . . . . . . . . . . 16 (𝑀 ∈ (𝐿...𝑁) ↔ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝐿𝑀𝑀𝑁)))
4035, 38, 39sylanbrc 580 . . . . . . . . . . . . . . 15 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) ∧ 𝐿 ∈ ℕ0) ∧ 𝐿𝑀) → 𝑀 ∈ (𝐿...𝑁))
4140exp31 412 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐿 ∈ ℕ0 → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4225, 41sylbi 209 . . . . . . . . . . . . 13 (𝑀 ∈ (0...𝑁) → (𝐿 ∈ ℕ0 → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4342adantr 474 . . . . . . . . . . . 12 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℕ0 → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4443com12 32 . . . . . . . . . . 11 (𝐿 ∈ ℕ0 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4524, 44sylbir 227 . . . . . . . . . 10 ((♯‘𝐴) ∈ ℕ0 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
463, 45syl 17 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4746adantr 474 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
4847imp 397 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (𝐿𝑀𝑀 ∈ (𝐿...𝑁)))
4948a1d 25 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿 → (𝐿𝑀𝑀 ∈ (𝐿...𝑁))))
50493imp 1143 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿𝐿𝑀) → 𝑀 ∈ (𝐿...𝑁))
51 elfz2nn0 12726 . . . . . . . . . . . 12 (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))))
52 nn0z 11729 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ ℤ)
538, 52syl5eqel 2911 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℤ)
5453adantr 474 . . . . . . . . . . . . . . . 16 (((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿) → 𝐿 ∈ ℤ)
5554adantl 475 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → 𝐿 ∈ ℤ)
56 nn0z 11729 . . . . . . . . . . . . . . . . 17 ((𝐿 + (♯‘𝐵)) ∈ ℕ0 → (𝐿 + (♯‘𝐵)) ∈ ℤ)
57563ad2ant2 1170 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝐿 + (♯‘𝐵)) ∈ ℤ)
5857adantr 474 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → (𝐿 + (♯‘𝐵)) ∈ ℤ)
59283ad2ant1 1169 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → 𝑁 ∈ ℤ)
6059adantr 474 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → 𝑁 ∈ ℤ)
6155, 58, 603jca 1164 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ))
628eqcomi 2835 . . . . . . . . . . . . . . . . . . 19 (♯‘𝐴) = 𝐿
6362eleq1i 2898 . . . . . . . . . . . . . . . . . 18 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℕ0)
64 nn0re 11629 . . . . . . . . . . . . . . . . . . . . . 22 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
65 nn0re 11629 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
66 ltnle 10437 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
6764, 65, 66syl2anr 592 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
6867bicomd 215 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝐿 ∈ ℕ0) → (¬ 𝑁𝐿𝐿 < 𝑁))
69 ltle 10446 . . . . . . . . . . . . . . . . . . . . 21 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁𝐿𝑁))
7064, 65, 69syl2anr 592 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐿 < 𝑁𝐿𝑁))
7168, 70sylbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0𝐿 ∈ ℕ0) → (¬ 𝑁𝐿𝐿𝑁))
7271ex 403 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 → (𝐿 ∈ ℕ0 → (¬ 𝑁𝐿𝐿𝑁)))
7363, 72syl5bi 234 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0 → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝑁𝐿𝐿𝑁)))
74733ad2ant1 1169 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝑁𝐿𝐿𝑁)))
7574imp32 411 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → 𝐿𝑁)
76 simpl3 1252 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → 𝑁 ≤ (𝐿 + (♯‘𝐵)))
7775, 76jca 509 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))))
78 elfz2 12627 . . . . . . . . . . . . . 14 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ↔ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))))
7961, 77, 78sylanbrc 580 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) ∧ ((♯‘𝐴) ∈ ℕ0 ∧ ¬ 𝑁𝐿)) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
8079exp32 413 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
8151, 80sylbi 209 . . . . . . . . . . 11 (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
8281adantl 475 . . . . . . . . . 10 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
833, 82syl5com 31 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
8483adantr 474 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
8584imp 397 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
8685a1dd 50 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿 → (𝐿𝑀𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
87863imp 1143 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿𝐿𝑀) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
8850, 87jca 509 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿𝐿𝑀) → (𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
898swrdccatin2 13827 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (𝐿...𝑁) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩)))
9023, 88, 89sylc 65 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿𝐿𝑀) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩))
91 simp1l 1260 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
92 nn0re 11629 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
9392adantr 474 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℝ)
94 ltnle 10437 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿 ↔ ¬ 𝐿𝑀))
9593, 64, 94syl2anr 592 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 < 𝐿 ↔ ¬ 𝐿𝑀))
9695bicomd 215 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (¬ 𝐿𝑀𝑀 < 𝐿))
97 simpll 785 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑀 < 𝐿) → 𝑀 ∈ ℕ0)
98 simplr 787 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑀 < 𝐿) → 𝐿 ∈ ℕ0)
99 ltle 10446 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 < 𝐿𝑀𝐿))
10092, 64, 99syl2an 591 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 < 𝐿𝑀𝐿))
101100imp 397 . . . . . . . . . . . . . . . . . . . 20 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑀 < 𝐿) → 𝑀𝐿)
102 elfz2nn0 12726 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
10397, 98, 101, 102syl3anbrc 1449 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑀 < 𝐿) → 𝑀 ∈ (0...𝐿))
104103exp31 412 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0 → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿𝑀 ∈ (0...𝐿))))
105104adantr 474 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 ∈ ℕ0 → (𝑀 < 𝐿𝑀 ∈ (0...𝐿))))
106105impcom 398 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 < 𝐿𝑀 ∈ (0...𝐿)))
10796, 106sylbid 232 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℕ0 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿)))
108107expcom 404 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 ∈ ℕ0 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
1091083adant3 1168 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐿 ∈ ℕ0 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
11025, 109sylbi 209 . . . . . . . . . . . 12 (𝑀 ∈ (0...𝑁) → (𝐿 ∈ ℕ0 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
11163, 110syl5bi 234 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
112111adantr 474 . . . . . . . . . 10 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐴) ∈ ℕ0 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
1133, 112syl5com 31 . . . . . . . . 9 (𝐴 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
114113adantr 474 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
115114imp 397 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿)))
116115a1d 25 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿 → (¬ 𝐿𝑀𝑀 ∈ (0...𝐿))))
1171163imp 1143 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → 𝑀 ∈ (0...𝐿))
118653ad2ant1 1169 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → 𝑁 ∈ ℝ)
11966bicomd 215 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (¬ 𝑁𝐿𝐿 < 𝑁))
12064, 118, 119syl2an 591 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (¬ 𝑁𝐿𝐿 < 𝑁))
12126adantr 474 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → 𝐿 ∈ ℤ)
12257adantl 475 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 + (♯‘𝐵)) ∈ ℤ)
12359adantl 475 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → 𝑁 ∈ ℤ)
124121, 122, 1233jca 1164 . . . . . . . . . . . . . . . . . . 19 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ))
125124adantr 474 . . . . . . . . . . . . . . . . . 18 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ))
12664, 118, 69syl2an 591 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 < 𝑁𝐿𝑁))
127126imp 397 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝐿𝑁)
128 simplr3 1285 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝑁 ≤ (𝐿 + (♯‘𝐵)))
129127, 128jca 509 . . . . . . . . . . . . . . . . . 18 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))))
130125, 129, 78sylanbrc 580 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) ∧ 𝐿 < 𝑁) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
131130ex 403 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 < 𝑁𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
132120, 131sylbid 232 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
133132ex 403 . . . . . . . . . . . . . 14 (𝐿 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
13463, 133sylbi 209 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
1353, 134syl 17 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
136135adantr 474 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
137136com12 32 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝐿 + (♯‘𝐵)) ∈ ℕ0𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
13851, 137sylbi 209 . . . . . . . . 9 (𝑁 ∈ (0...(𝐿 + (♯‘𝐵))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
139138adantl 475 . . . . . . . 8 ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
140139impcom 398 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
141140a1dd 50 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → (¬ 𝑁𝐿 → (¬ 𝐿𝑀𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))))
1421413imp 1143 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))
143117, 142jca 509 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))))
1448swrdccatin12OLD 13833 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))))
14591, 143, 144sylc 65 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) ∧ ¬ 𝑁𝐿 ∧ ¬ 𝐿𝑀) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))
14622, 90, 1452if2 4360 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩)))))
147146ex 403 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩) = if(𝑁𝐿, (𝐴 substr ⟨𝑀, 𝑁⟩), if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (𝑁𝐿)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ (𝐵 substr ⟨0, (𝑁𝐿)⟩))))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 198   ∧ wa 386   ∧ w3a 1113   = wceq 1658   ∈ wcel 2166  ifcif 4307  ⟨cop 4404   class class class wbr 4874  ‘cfv 6124  (class class class)co 6906  ℝcr 10252  0cc0 10253   + caddc 10256   < clt 10392   ≤ cle 10393   − cmin 10586  ℕ0cn0 11619  ℤcz 11705  ...cfz 12620  ♯chash 13411  Word cword 13575   ++ cconcat 13631   substr csubstr 13701 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-card 9079  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-n0 11620  df-z 11706  df-uz 11970  df-fz 12621  df-fzo 12762  df-hash 13412  df-word 13576  df-concat 13632  df-substr 13702 This theorem is referenced by:  swrdccatOLD  13837  swrdccat3aOLD  13841  swrdccat3bOLD  13844
 Copyright terms: Public domain W3C validator