MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatin12lem2OLD Structured version   Visualization version   GIF version

Theorem swrdccatin12lem2OLD 13790
Description: Obsolete proof of pfxccatin12lem2 13789 as of 12-Oct-2022. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
swrdccatin12lem2OLD (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐵 substr ⟨0, (𝑁𝐿)⟩)‘(𝐾 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))))))

Proof of Theorem swrdccatin12lem2OLD
StepHypRef Expression
1 swrdccatin2.l . . . . . 6 𝐿 = (♯‘𝐴)
21swrdccatin12lem2c 13788 . . . . 5 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
32adantr 473 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))))
4 simprl 788 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐾 ∈ (0..^(𝑁𝑀)))
5 swrdfv 13671 . . . 4 ((((𝐴 ++ 𝐵) ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) ∧ 𝐾 ∈ (0..^(𝑁𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
63, 4, 5syl2anc 580 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)))
7 elfzoelz 12721 . . . . . . . 8 (𝐾 ∈ (0..^(𝑁𝑀)) → 𝐾 ∈ ℤ)
8 elfz2nn0 12681 . . . . . . . . . . 11 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
9 nn0cn 11587 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
10 nn0cn 11587 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
119, 10anim12i 607 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ))
12 zcn 11667 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
13 subcl 10569 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1413ancoms 451 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1514anim2i 611 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → (𝐾 ∈ ℂ ∧ (𝐿𝑀) ∈ ℂ))
1615ancoms 451 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 ∈ ℂ ∧ (𝐿𝑀) ∈ ℂ))
17 subcl 10569 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℂ ∧ (𝐿𝑀) ∈ ℂ) → (𝐾 − (𝐿𝑀)) ∈ ℂ)
1816, 17syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 − (𝐿𝑀)) ∈ ℂ)
1918addid1d 10524 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝐾 − (𝐿𝑀)) + 0) = (𝐾 − (𝐿𝑀)))
20 simpr 478 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝐾 ∈ ℂ)
21 simplr 786 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝐿 ∈ ℂ)
22 simpll 784 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝑀 ∈ ℂ)
2320, 21, 22subsub3d 10712 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 − (𝐿𝑀)) = ((𝐾 + 𝑀) − 𝐿))
2419, 23eqtr2d 2832 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿𝑀)) + 0))
2511, 12, 24syl2an 590 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿𝑀)) + 0))
26 oveq2 6884 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) = 𝐿 → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 + 𝑀) − 𝐿))
2726eqcoms 2805 . . . . . . . . . . . . . . . 16 (𝐿 = (♯‘𝐴) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 + 𝑀) − 𝐿))
2827eqeq1d 2799 . . . . . . . . . . . . . . 15 (𝐿 = (♯‘𝐴) → (((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0) ↔ ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿𝑀)) + 0)))
2925, 28syl5ibr 238 . . . . . . . . . . . . . 14 (𝐿 = (♯‘𝐴) → (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
301, 29ax-mp 5 . . . . . . . . . . . . 13 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0))
3130ex 402 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
32313adant3 1163 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
338, 32sylbi 209 . . . . . . . . . 10 (𝑀 ∈ (0...𝐿) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
3433adantr 473 . . . . . . . . 9 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
3534adantl 474 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
367, 35syl5com 31 . . . . . . 7 (𝐾 ∈ (0..^(𝑁𝑀)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
3736adantr 473 . . . . . 6 ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0)))
3837impcom 397 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿𝑀)) + 0))
3938fveq2d 6413 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐵‘((𝐾 + 𝑀) − (♯‘𝐴))) = (𝐵‘((𝐾 − (𝐿𝑀)) + 0)))
40 simpll 784 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
41 swrdccatin12lem2a 13784 . . . . . . . . 9 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵)))))
4241adantl 474 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵)))))
4342imp 396 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵))))
44 id 22 . . . . . . . . . . 11 ((♯‘𝐴) = 𝐿 → (♯‘𝐴) = 𝐿)
45 oveq1 6883 . . . . . . . . . . 11 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴) + (♯‘𝐵)) = (𝐿 + (♯‘𝐵)))
4644, 45oveq12d 6894 . . . . . . . . . 10 ((♯‘𝐴) = 𝐿 → ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) = (𝐿..^(𝐿 + (♯‘𝐵))))
4746eleq2d 2862 . . . . . . . . 9 ((♯‘𝐴) = 𝐿 → ((𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵)))))
4847eqcoms 2805 . . . . . . . 8 (𝐿 = (♯‘𝐴) → ((𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵)))))
491, 48ax-mp 5 . . . . . . 7 ((𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵))))
5043, 49sylibr 226 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
51 df-3an 1110 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))))
5240, 50, 51sylanbrc 579 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))))
53 ccatval2 13594 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐵‘((𝐾 + 𝑀) − (♯‘𝐴))))
5452, 53syl 17 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐵‘((𝐾 + 𝑀) − (♯‘𝐴))))
55 simplr 786 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐵 ∈ Word 𝑉)
5655adantr 473 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 𝐵 ∈ Word 𝑉)
57 elfz2 12583 . . . . . . . . . 10 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ↔ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))))
58 zsubcl 11705 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
5958ancoms 451 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
6059adantr 473 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿𝑁) → (𝑁𝐿) ∈ ℤ)
61 zre 11666 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
62 zre 11666 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
63 subge0 10831 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (0 ≤ (𝑁𝐿) ↔ 𝐿𝑁))
6461, 62, 63syl2anr 591 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ (𝑁𝐿) ↔ 𝐿𝑁))
6564biimprd 240 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿𝑁 → 0 ≤ (𝑁𝐿)))
6665imp 396 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿𝑁) → 0 ≤ (𝑁𝐿))
67 elnn0z 11675 . . . . . . . . . . . . . . . 16 ((𝑁𝐿) ∈ ℕ0 ↔ ((𝑁𝐿) ∈ ℤ ∧ 0 ≤ (𝑁𝐿)))
6860, 66, 67sylanbrc 579 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿𝑁) → (𝑁𝐿) ∈ ℕ0)
6968expcom 403 . . . . . . . . . . . . . 14 (𝐿𝑁 → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℕ0))
7069adantr 473 . . . . . . . . . . . . 13 ((𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℕ0))
7170com12 32 . . . . . . . . . . . 12 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝑁𝐿) ∈ ℕ0))
72713adant2 1162 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝑁𝐿) ∈ ℕ0))
7372imp 396 . . . . . . . . . 10 (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ ℕ0)
7457, 73sylbi 209 . . . . . . . . 9 (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝑁𝐿) ∈ ℕ0)
7574adantl 474 . . . . . . . 8 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ ℕ0)
76 0elfz 12687 . . . . . . . 8 ((𝑁𝐿) ∈ ℕ0 → 0 ∈ (0...(𝑁𝐿)))
7775, 76syl 17 . . . . . . 7 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → 0 ∈ (0...(𝑁𝐿)))
7877adantl 474 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 0 ∈ (0...(𝑁𝐿)))
7978adantr 473 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → 0 ∈ (0...(𝑁𝐿)))
80 lencl 13549 . . . . . . . . 9 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
81 elfzel2 12590 . . . . . . . . . . 11 (𝑀 ∈ (0...𝐿) → 𝐿 ∈ ℤ)
8270expcomd 407 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝑁 ∈ ℤ → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0)))
8382com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → ((𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0)))
84833ad2ant3 1166 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0)))
8584imp 396 . . . . . . . . . . . . . . . . . . 19 (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℤ → (𝑁𝐿) ∈ ℕ0))
8685com12 32 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℤ → (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ ℕ0))
8786adantr 473 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ ℕ0))
8887imp 396 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))))) → (𝑁𝐿) ∈ ℕ0)
89 simplr 786 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))))) → (♯‘𝐵) ∈ ℕ0)
90613ad2ant3 1166 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
9190adantl 474 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ)
9262adantr 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → 𝐿 ∈ ℝ)
9392adantr 473 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐿 ∈ ℝ)
94 nn0re 11586 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝐵) ∈ ℕ0 → (♯‘𝐵) ∈ ℝ)
9594adantl 474 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → (♯‘𝐵) ∈ ℝ)
9695adantr 473 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (♯‘𝐵) ∈ ℝ)
9791, 93, 963jca 1159 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ))
98 lesubadd2 10791 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((𝑁𝐿) ≤ (♯‘𝐵) ↔ 𝑁 ≤ (𝐿 + (♯‘𝐵))))
9998biimprd 240 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → (𝑁 ≤ (𝐿 + (♯‘𝐵)) → (𝑁𝐿) ≤ (♯‘𝐵)))
10097, 99syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ≤ (𝐿 + (♯‘𝐵)) → (𝑁𝐿) ≤ (♯‘𝐵)))
101100ex 402 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ (𝐿 + (♯‘𝐵)) → (𝑁𝐿) ≤ (♯‘𝐵))))
102101com13 88 . . . . . . . . . . . . . . . . . . 19 (𝑁 ≤ (𝐿 + (♯‘𝐵)) → ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → (𝑁𝐿) ≤ (♯‘𝐵))))
103102adantl 474 . . . . . . . . . . . . . . . . . 18 ((𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → (𝑁𝐿) ≤ (♯‘𝐵))))
104103impcom 397 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))) → ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → (𝑁𝐿) ≤ (♯‘𝐵)))
105104impcom 397 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))))) → (𝑁𝐿) ≤ (♯‘𝐵))
10688, 89, 1053jca 1159 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵))))) → ((𝑁𝐿) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0 ∧ (𝑁𝐿) ≤ (♯‘𝐵)))
107106ex 402 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁 ≤ (𝐿 + (♯‘𝐵)))) → ((𝑁𝐿) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0 ∧ (𝑁𝐿) ≤ (♯‘𝐵))))
108 elfz2nn0 12681 . . . . . . . . . . . . . 14 ((𝑁𝐿) ∈ (0...(♯‘𝐵)) ↔ ((𝑁𝐿) ∈ ℕ0 ∧ (♯‘𝐵) ∈ ℕ0 ∧ (𝑁𝐿) ≤ (♯‘𝐵)))
109107, 57, 1083imtr4g 288 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝑁𝐿) ∈ (0...(♯‘𝐵))))
110109ex 402 . . . . . . . . . . . 12 (𝐿 ∈ ℤ → ((♯‘𝐵) ∈ ℕ0 → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))))
111110com23 86 . . . . . . . . . . 11 (𝐿 ∈ ℤ → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((♯‘𝐵) ∈ ℕ0 → (𝑁𝐿) ∈ (0...(♯‘𝐵)))))
11281, 111syl 17 . . . . . . . . . 10 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((♯‘𝐵) ∈ ℕ0 → (𝑁𝐿) ∈ (0...(♯‘𝐵)))))
113112imp 396 . . . . . . . . 9 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐵) ∈ ℕ0 → (𝑁𝐿) ∈ (0...(♯‘𝐵))))
11480, 113syl5com 31 . . . . . . . 8 (𝐵 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ (0...(♯‘𝐵))))
115114adantl 474 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁𝐿) ∈ (0...(♯‘𝐵))))
116115imp 396 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
117116adantr 473 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝑁𝐿) ∈ (0...(♯‘𝐵)))
118 swrdccatin12lem2bOLD 13786 . . . . . . 7 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^((𝑁𝐿) − 0))))
119118adantl 474 . . . . . 6 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^((𝑁𝐿) − 0))))
120119imp 396 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 − (𝐿𝑀)) ∈ (0..^((𝑁𝐿) − 0)))
121 swrdfv 13671 . . . . 5 (((𝐵 ∈ Word 𝑉 ∧ 0 ∈ (0...(𝑁𝐿)) ∧ (𝑁𝐿) ∈ (0...(♯‘𝐵))) ∧ (𝐾 − (𝐿𝑀)) ∈ (0..^((𝑁𝐿) − 0))) → ((𝐵 substr ⟨0, (𝑁𝐿)⟩)‘(𝐾 − (𝐿𝑀))) = (𝐵‘((𝐾 − (𝐿𝑀)) + 0)))
12256, 79, 117, 120, 121syl31anc 1493 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐵 substr ⟨0, (𝑁𝐿)⟩)‘(𝐾 − (𝐿𝑀))) = (𝐵‘((𝐾 − (𝐿𝑀)) + 0)))
12339, 54, 1223eqtr4d 2841 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = ((𝐵 substr ⟨0, (𝑁𝐿)⟩)‘(𝐾 − (𝐿𝑀))))
124 simpll 784 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐴 ∈ Word 𝑉)
125 simprl 788 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ (0...𝐿))
126 lencl 13549 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
127 elnn0uz 11965 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ ℕ0 ↔ (♯‘𝐴) ∈ (ℤ‘0))
128 eluzfz2 12599 . . . . . . . . . . . . . 14 ((♯‘𝐴) ∈ (ℤ‘0) → (♯‘𝐴) ∈ (0...(♯‘𝐴)))
129127, 128sylbi 209 . . . . . . . . . . . . 13 ((♯‘𝐴) ∈ ℕ0 → (♯‘𝐴) ∈ (0...(♯‘𝐴)))
1301, 129syl5eqel 2880 . . . . . . . . . . . 12 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ (0...(♯‘𝐴)))
131126, 130syl 17 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉𝐿 ∈ (0...(♯‘𝐴)))
132131adantr 473 . . . . . . . . . 10 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ (0...(♯‘𝐴)))
133132adantr 473 . . . . . . . . 9 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐿 ∈ (0...(♯‘𝐴)))
134124, 125, 1333jca 1159 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))))
135134adantr 473 . . . . . . 7 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))))
136 swrdlen 13670 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))) → (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
137135, 136syl 17 . . . . . 6 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)) = (𝐿𝑀))
138137eqcomd 2803 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐿𝑀) = (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))
139138oveq2d 6892 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (𝐾 − (𝐿𝑀)) = (𝐾 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))))
140139fveq2d 6413 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → ((𝐵 substr ⟨0, (𝑁𝐿)⟩)‘(𝐾 − (𝐿𝑀))) = ((𝐵 substr ⟨0, (𝑁𝐿)⟩)‘(𝐾 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
1416, 123, 1403eqtrd 2835 . 2 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀)))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐵 substr ⟨0, (𝑁𝐿)⟩)‘(𝐾 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩)))))
142141ex 402 1 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (((𝐴 ++ 𝐵) substr ⟨𝑀, 𝑁⟩)‘𝐾) = ((𝐵 substr ⟨0, (𝑁𝐿)⟩)‘(𝐾 − (♯‘(𝐴 substr ⟨𝑀, 𝐿⟩))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  cop 4372   class class class wbr 4841  cfv 6099  (class class class)co 6876  cc 10220  cr 10221  0cc0 10222   + caddc 10225  cle 10362  cmin 10554  0cn0 11576  cz 11662  cuz 11926  ...cfz 12576  ..^cfzo 12716  chash 13366  Word cword 13530   ++ cconcat 13586   substr csubstr 13661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-card 9049  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-n0 11577  df-z 11663  df-uz 11927  df-fz 12577  df-fzo 12717  df-hash 13367  df-word 13531  df-concat 13587  df-substr 13662
This theorem is referenced by:  swrdccatin12OLD  13793
  Copyright terms: Public domain W3C validator