Proof of Theorem swrdccatin12lem2OLD
Step | Hyp | Ref
| Expression |
1 | | swrdccatin2.l |
. . . . . 6
⊢ 𝐿 = (♯‘𝐴) |
2 | 1 | swrdccatin12lem2c 13788 |
. . . . 5
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))) |
3 | 2 | adantr 473 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → ((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵))))) |
4 | | simprl 788 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐾 ∈ (0..^(𝑁 − 𝑀))) |
5 | | swrdfv 13671 |
. . . 4
⊢ ((((𝐴 ++ 𝐵) ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘(𝐴 ++ 𝐵)))) ∧ 𝐾 ∈ (0..^(𝑁 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀))) |
6 | 3, 4, 5 | syl2anc 580 |
. . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝐾) = ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀))) |
7 | | elfzoelz 12721 |
. . . . . . . 8
⊢ (𝐾 ∈ (0..^(𝑁 − 𝑀)) → 𝐾 ∈ ℤ) |
8 | | elfz2nn0 12681 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0
∧ 𝑀 ≤ 𝐿)) |
9 | | nn0cn 11587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈
ℂ) |
10 | | nn0cn 11587 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐿 ∈ ℕ0
→ 𝐿 ∈
ℂ) |
11 | 9, 10 | anim12i 607 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) |
12 | | zcn 11667 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ ℤ → 𝐾 ∈
ℂ) |
13 | | subcl 10569 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿 − 𝑀) ∈ ℂ) |
14 | 13 | ancoms 451 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿 − 𝑀) ∈ ℂ) |
15 | 14 | anim2i 611 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐾 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → (𝐾 ∈ ℂ ∧ (𝐿 − 𝑀) ∈ ℂ)) |
16 | 15 | ancoms 451 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 ∈ ℂ ∧ (𝐿 − 𝑀) ∈ ℂ)) |
17 | | subcl 10569 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ ℂ ∧ (𝐿 − 𝑀) ∈ ℂ) → (𝐾 − (𝐿 − 𝑀)) ∈ ℂ) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 − (𝐿 − 𝑀)) ∈ ℂ) |
19 | 18 | addid1d 10524 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝐾 − (𝐿 − 𝑀)) + 0) = (𝐾 − (𝐿 − 𝑀))) |
20 | | simpr 478 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝐾 ∈
ℂ) |
21 | | simplr 786 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝐿 ∈
ℂ) |
22 | | simpll 784 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → 𝑀 ∈
ℂ) |
23 | 20, 21, 22 | subsub3d 10712 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (𝐾 − (𝐿 − 𝑀)) = ((𝐾 + 𝑀) − 𝐿)) |
24 | 19, 23 | eqtr2d 2832 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) ∧ 𝐾 ∈ ℂ) → ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿 − 𝑀)) + 0)) |
25 | 11, 12, 24 | syl2an 590 |
. . . . . . . . . . . . . . 15
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿 − 𝑀)) + 0)) |
26 | | oveq2 6884 |
. . . . . . . . . . . . . . . . 17
⊢
((♯‘𝐴) =
𝐿 → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 + 𝑀) − 𝐿)) |
27 | 26 | eqcoms 2805 |
. . . . . . . . . . . . . . . 16
⊢ (𝐿 = (♯‘𝐴) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 + 𝑀) − 𝐿)) |
28 | 27 | eqeq1d 2799 |
. . . . . . . . . . . . . . 15
⊢ (𝐿 = (♯‘𝐴) → (((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0) ↔ ((𝐾 + 𝑀) − 𝐿) = ((𝐾 − (𝐿 − 𝑀)) + 0))) |
29 | 25, 28 | syl5ibr 238 |
. . . . . . . . . . . . . 14
⊢ (𝐿 = (♯‘𝐴) → (((𝑀 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0)
∧ 𝐾 ∈ ℤ)
→ ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0))) |
30 | 1, 29 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) ∧ 𝐾 ∈ ℤ) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0)) |
31 | 30 | ex 402 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0))) |
32 | 31 | 3adant3 1163 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℕ0
∧ 𝐿 ∈
ℕ0 ∧ 𝑀
≤ 𝐿) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0))) |
33 | 8, 32 | sylbi 209 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (0...𝐿) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0))) |
34 | 33 | adantr 473 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0))) |
35 | 34 | adantl 474 |
. . . . . . . 8
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐾 ∈ ℤ → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0))) |
36 | 7, 35 | syl5com 31 |
. . . . . . 7
⊢ (𝐾 ∈ (0..^(𝑁 − 𝑀)) → (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0))) |
37 | 36 | adantr 473 |
. . . . . 6
⊢ ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0))) |
38 | 37 | impcom 397 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → ((𝐾 + 𝑀) − (♯‘𝐴)) = ((𝐾 − (𝐿 − 𝑀)) + 0)) |
39 | 38 | fveq2d 6413 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐵‘((𝐾 + 𝑀) − (♯‘𝐴))) = (𝐵‘((𝐾 − (𝐿 − 𝑀)) + 0))) |
40 | | simpll 784 |
. . . . . 6
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉)) |
41 | | swrdccatin12lem2a 13784 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵))))) |
42 | 41 | adantl 474 |
. . . . . . . 8
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵))))) |
43 | 42 | imp 396 |
. . . . . . 7
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵)))) |
44 | | id 22 |
. . . . . . . . . . 11
⊢
((♯‘𝐴) =
𝐿 →
(♯‘𝐴) = 𝐿) |
45 | | oveq1 6883 |
. . . . . . . . . . 11
⊢
((♯‘𝐴) =
𝐿 →
((♯‘𝐴) +
(♯‘𝐵)) = (𝐿 + (♯‘𝐵))) |
46 | 44, 45 | oveq12d 6894 |
. . . . . . . . . 10
⊢
((♯‘𝐴) =
𝐿 →
((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) = (𝐿..^(𝐿 + (♯‘𝐵)))) |
47 | 46 | eleq2d 2862 |
. . . . . . . . 9
⊢
((♯‘𝐴) =
𝐿 → ((𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵))))) |
48 | 47 | eqcoms 2805 |
. . . . . . . 8
⊢ (𝐿 = (♯‘𝐴) → ((𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵))))) |
49 | 1, 48 | ax-mp 5 |
. . . . . . 7
⊢ ((𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ (𝐾 + 𝑀) ∈ (𝐿..^(𝐿 + (♯‘𝐵)))) |
50 | 43, 49 | sylibr 226 |
. . . . . 6
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) |
51 | | df-3an 1110 |
. . . . . 6
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) ↔ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))) |
52 | 40, 50, 51 | sylanbrc 579 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))) |
53 | | ccatval2 13594 |
. . . . 5
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ (𝐾 + 𝑀) ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐵‘((𝐾 + 𝑀) − (♯‘𝐴)))) |
54 | 52, 53 | syl 17 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = (𝐵‘((𝐾 + 𝑀) − (♯‘𝐴)))) |
55 | | simplr 786 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐵 ∈ Word 𝑉) |
56 | 55 | adantr 473 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 𝐵 ∈ Word 𝑉) |
57 | | elfz2 12583 |
. . . . . . . . . 10
⊢ (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) ↔ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))))) |
58 | | zsubcl 11705 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁 − 𝐿) ∈ ℤ) |
59 | 58 | ancoms 451 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 − 𝐿) ∈ ℤ) |
60 | 59 | adantr 473 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿 ≤ 𝑁) → (𝑁 − 𝐿) ∈ ℤ) |
61 | | zre 11666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ∈ ℤ → 𝑁 ∈
ℝ) |
62 | | zre 11666 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐿 ∈ ℤ → 𝐿 ∈
ℝ) |
63 | | subge0 10831 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (0 ≤
(𝑁 − 𝐿) ↔ 𝐿 ≤ 𝑁)) |
64 | 61, 62, 63 | syl2anr 591 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤
(𝑁 − 𝐿) ↔ 𝐿 ≤ 𝑁)) |
65 | 64 | biimprd 240 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐿 ≤ 𝑁 → 0 ≤ (𝑁 − 𝐿))) |
66 | 65 | imp 396 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿 ≤ 𝑁) → 0 ≤ (𝑁 − 𝐿)) |
67 | | elnn0z 11675 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 − 𝐿) ∈ ℕ0 ↔ ((𝑁 − 𝐿) ∈ ℤ ∧ 0 ≤ (𝑁 − 𝐿))) |
68 | 60, 66, 67 | sylanbrc 579 |
. . . . . . . . . . . . . . 15
⊢ (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐿 ≤ 𝑁) → (𝑁 − 𝐿) ∈
ℕ0) |
69 | 68 | expcom 403 |
. . . . . . . . . . . . . 14
⊢ (𝐿 ≤ 𝑁 → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 − 𝐿) ∈
ℕ0)) |
70 | 69 | adantr 473 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 − 𝐿) ∈
ℕ0)) |
71 | 70 | com12 32 |
. . . . . . . . . . . 12
⊢ ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝑁 − 𝐿) ∈
ℕ0)) |
72 | 71 | 3adant2 1162 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝑁 − 𝐿) ∈
ℕ0)) |
73 | 72 | imp 396 |
. . . . . . . . . 10
⊢ (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝑁 − 𝐿) ∈
ℕ0) |
74 | 57, 73 | sylbi 209 |
. . . . . . . . 9
⊢ (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝑁 − 𝐿) ∈
ℕ0) |
75 | 74 | adantl 474 |
. . . . . . . 8
⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁 − 𝐿) ∈
ℕ0) |
76 | | 0elfz 12687 |
. . . . . . . 8
⊢ ((𝑁 − 𝐿) ∈ ℕ0 → 0 ∈
(0...(𝑁 − 𝐿))) |
77 | 75, 76 | syl 17 |
. . . . . . 7
⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → 0 ∈ (0...(𝑁 − 𝐿))) |
78 | 77 | adantl 474 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 0 ∈ (0...(𝑁 − 𝐿))) |
79 | 78 | adantr 473 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → 0 ∈ (0...(𝑁 − 𝐿))) |
80 | | lencl 13549 |
. . . . . . . . 9
⊢ (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈
ℕ0) |
81 | | elfzel2 12590 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ (0...𝐿) → 𝐿 ∈ ℤ) |
82 | 70 | expcomd 407 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝑁 ∈ ℤ → (𝐿 ∈ ℤ → (𝑁 − 𝐿) ∈
ℕ0))) |
83 | 82 | com12 32 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℤ → ((𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℤ → (𝑁 − 𝐿) ∈
ℕ0))) |
84 | 83 | 3ad2ant3 1166 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → (𝐿 ∈ ℤ → (𝑁 − 𝐿) ∈
ℕ0))) |
85 | 84 | imp 396 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝐿 ∈ ℤ → (𝑁 − 𝐿) ∈
ℕ0)) |
86 | 85 | com12 32 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐿 ∈ ℤ → (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝑁 − 𝐿) ∈
ℕ0)) |
87 | 86 | adantr 473 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) → (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → (𝑁 − 𝐿) ∈
ℕ0)) |
88 | 87 | imp 396 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))))) → (𝑁 − 𝐿) ∈
ℕ0) |
89 | | simplr 786 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))))) → (♯‘𝐵) ∈
ℕ0) |
90 | 61 | 3ad2ant3 1166 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈
ℝ) |
91 | 90 | adantl 474 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℝ) |
92 | 62 | adantr 473 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) → 𝐿 ∈ ℝ) |
93 | 92 | adantr 473 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐿 ∈ ℝ) |
94 | | nn0re 11586 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
((♯‘𝐵)
∈ ℕ0 → (♯‘𝐵) ∈ ℝ) |
95 | 94 | adantl 474 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) → (♯‘𝐵) ∈ ℝ) |
96 | 95 | adantr 473 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) →
(♯‘𝐵) ∈
ℝ) |
97 | 91, 93, 96 | 3jca 1159 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (♯‘𝐵) ∈
ℝ)) |
98 | | lesubadd2 10791 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧
(♯‘𝐵) ∈
ℝ) → ((𝑁 −
𝐿) ≤
(♯‘𝐵) ↔
𝑁 ≤ (𝐿 + (♯‘𝐵)))) |
99 | 98 | biimprd 240 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑁 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧
(♯‘𝐵) ∈
ℝ) → (𝑁 ≤
(𝐿 + (♯‘𝐵)) → (𝑁 − 𝐿) ≤ (♯‘𝐵))) |
100 | 97, 99 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ (𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝑁 ≤ (𝐿 + (♯‘𝐵)) → (𝑁 − 𝐿) ≤ (♯‘𝐵))) |
101 | 100 | ex 402 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) → ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ (𝐿 + (♯‘𝐵)) → (𝑁 − 𝐿) ≤ (♯‘𝐵)))) |
102 | 101 | com13 88 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑁 ≤ (𝐿 + (♯‘𝐵)) → ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0)
→ (𝑁 − 𝐿) ≤ (♯‘𝐵)))) |
103 | 102 | adantl 474 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))) → ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0)
→ (𝑁 − 𝐿) ≤ (♯‘𝐵)))) |
104 | 103 | impcom 397 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → ((𝐿 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ0)
→ (𝑁 − 𝐿) ≤ (♯‘𝐵))) |
105 | 104 | impcom 397 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))))) → (𝑁 − 𝐿) ≤ (♯‘𝐵)) |
106 | 88, 89, 105 | 3jca 1159 |
. . . . . . . . . . . . . . 15
⊢ (((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) ∧ ((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵))))) → ((𝑁 − 𝐿) ∈ ℕ0 ∧
(♯‘𝐵) ∈
ℕ0 ∧ (𝑁 − 𝐿) ≤ (♯‘𝐵))) |
107 | 106 | ex 402 |
. . . . . . . . . . . . . 14
⊢ ((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) → (((𝐿 ∈ ℤ ∧ (𝐿 + (♯‘𝐵)) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿 ≤ 𝑁 ∧ 𝑁 ≤ (𝐿 + (♯‘𝐵)))) → ((𝑁 − 𝐿) ∈ ℕ0 ∧
(♯‘𝐵) ∈
ℕ0 ∧ (𝑁 − 𝐿) ≤ (♯‘𝐵)))) |
108 | | elfz2nn0 12681 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 − 𝐿) ∈ (0...(♯‘𝐵)) ↔ ((𝑁 − 𝐿) ∈ ℕ0 ∧
(♯‘𝐵) ∈
ℕ0 ∧ (𝑁 − 𝐿) ≤ (♯‘𝐵))) |
109 | 107, 57, 108 | 3imtr4g 288 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ ℤ ∧
(♯‘𝐵) ∈
ℕ0) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵)))) |
110 | 109 | ex 402 |
. . . . . . . . . . . 12
⊢ (𝐿 ∈ ℤ →
((♯‘𝐵) ∈
ℕ0 → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))))) |
111 | 110 | com23 86 |
. . . . . . . . . . 11
⊢ (𝐿 ∈ ℤ → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((♯‘𝐵) ∈ ℕ0 → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))))) |
112 | 81, 111 | syl 17 |
. . . . . . . . . 10
⊢ (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))) → ((♯‘𝐵) ∈ ℕ0 → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))))) |
113 | 112 | imp 396 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐵) ∈ ℕ0
→ (𝑁 − 𝐿) ∈
(0...(♯‘𝐵)))) |
114 | 80, 113 | syl5com 31 |
. . . . . . . 8
⊢ (𝐵 ∈ Word 𝑉 → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵)))) |
115 | 114 | adantl 474 |
. . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵)))) |
116 | 115 | imp 396 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))) |
117 | 116 | adantr 473 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))) |
118 | | swrdccatin12lem2bOLD 13786 |
. . . . . . 7
⊢ ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵)))) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (𝐾 − (𝐿 − 𝑀)) ∈ (0..^((𝑁 − 𝐿) − 0)))) |
119 | 118 | adantl 474 |
. . . . . 6
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (𝐾 − (𝐿 − 𝑀)) ∈ (0..^((𝑁 − 𝐿) − 0)))) |
120 | 119 | imp 396 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐾 − (𝐿 − 𝑀)) ∈ (0..^((𝑁 − 𝐿) − 0))) |
121 | | swrdfv 13671 |
. . . . 5
⊢ (((𝐵 ∈ Word 𝑉 ∧ 0 ∈ (0...(𝑁 − 𝐿)) ∧ (𝑁 − 𝐿) ∈ (0...(♯‘𝐵))) ∧ (𝐾 − (𝐿 − 𝑀)) ∈ (0..^((𝑁 − 𝐿) − 0))) → ((𝐵 substr 〈0, (𝑁 − 𝐿)〉)‘(𝐾 − (𝐿 − 𝑀))) = (𝐵‘((𝐾 − (𝐿 − 𝑀)) + 0))) |
122 | 56, 79, 117, 120, 121 | syl31anc 1493 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → ((𝐵 substr 〈0, (𝑁 − 𝐿)〉)‘(𝐾 − (𝐿 − 𝑀))) = (𝐵‘((𝐾 − (𝐿 − 𝑀)) + 0))) |
123 | 39, 54, 122 | 3eqtr4d 2841 |
. . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → ((𝐴 ++ 𝐵)‘(𝐾 + 𝑀)) = ((𝐵 substr 〈0, (𝑁 − 𝐿)〉)‘(𝐾 − (𝐿 − 𝑀)))) |
124 | | simpll 784 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐴 ∈ Word 𝑉) |
125 | | simprl 788 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝑀 ∈ (0...𝐿)) |
126 | | lencl 13549 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈
ℕ0) |
127 | | elnn0uz 11965 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐴)
∈ ℕ0 ↔ (♯‘𝐴) ∈
(ℤ≥‘0)) |
128 | | eluzfz2 12599 |
. . . . . . . . . . . . . 14
⊢
((♯‘𝐴)
∈ (ℤ≥‘0) → (♯‘𝐴) ∈ (0...(♯‘𝐴))) |
129 | 127, 128 | sylbi 209 |
. . . . . . . . . . . . 13
⊢
((♯‘𝐴)
∈ ℕ0 → (♯‘𝐴) ∈ (0...(♯‘𝐴))) |
130 | 1, 129 | syl5eqel 2880 |
. . . . . . . . . . . 12
⊢
((♯‘𝐴)
∈ ℕ0 → 𝐿 ∈ (0...(♯‘𝐴))) |
131 | 126, 130 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ Word 𝑉 → 𝐿 ∈ (0...(♯‘𝐴))) |
132 | 131 | adantr 473 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) → 𝐿 ∈ (0...(♯‘𝐴))) |
133 | 132 | adantr 473 |
. . . . . . . . 9
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → 𝐿 ∈ (0...(♯‘𝐴))) |
134 | 124, 125,
133 | 3jca 1159 |
. . . . . . . 8
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → (𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴)))) |
135 | 134 | adantr 473 |
. . . . . . 7
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴)))) |
136 | | swrdlen 13670 |
. . . . . . 7
⊢ ((𝐴 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐴))) → (♯‘(𝐴 substr 〈𝑀, 𝐿〉)) = (𝐿 − 𝑀)) |
137 | 135, 136 | syl 17 |
. . . . . 6
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (♯‘(𝐴 substr 〈𝑀, 𝐿〉)) = (𝐿 − 𝑀)) |
138 | 137 | eqcomd 2803 |
. . . . 5
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐿 − 𝑀) = (♯‘(𝐴 substr 〈𝑀, 𝐿〉))) |
139 | 138 | oveq2d 6892 |
. . . 4
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (𝐾 − (𝐿 − 𝑀)) = (𝐾 − (♯‘(𝐴 substr 〈𝑀, 𝐿〉)))) |
140 | 139 | fveq2d 6413 |
. . 3
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → ((𝐵 substr 〈0, (𝑁 − 𝐿)〉)‘(𝐾 − (𝐿 − 𝑀))) = ((𝐵 substr 〈0, (𝑁 − 𝐿)〉)‘(𝐾 − (♯‘(𝐴 substr 〈𝑀, 𝐿〉))))) |
141 | 6, 123, 140 | 3eqtrd 2835 |
. 2
⊢ ((((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) ∧ (𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀)))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝐾) = ((𝐵 substr 〈0, (𝑁 − 𝐿)〉)‘(𝐾 − (♯‘(𝐴 substr 〈𝑀, 𝐿〉))))) |
142 | 141 | ex 402 |
1
⊢ (((𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉) ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...(𝐿 + (♯‘𝐵))))) → ((𝐾 ∈ (0..^(𝑁 − 𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿 − 𝑀))) → (((𝐴 ++ 𝐵) substr 〈𝑀, 𝑁〉)‘𝐾) = ((𝐵 substr 〈0, (𝑁 − 𝐿)〉)‘(𝐾 − (♯‘(𝐴 substr 〈𝑀, 𝐿〉)))))) |