MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatin12lem2a Structured version   Visualization version   GIF version

Theorem swrdccatin12lem2a 13731
Description: Lemma 1 for swrdccatin12lem2OLD 13737. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.)
Assertion
Ref Expression
swrdccatin12lem2a ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))

Proof of Theorem swrdccatin12lem2a
StepHypRef Expression
1 elfz2 12540 . . . . 5 (𝑀 ∈ (0...𝐿) ↔ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)))
2 zsubcl 11666 . . . . . . 7 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
323adant1 1160 . . . . . 6 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
43adantr 472 . . . . 5 (((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)) → (𝐿𝑀) ∈ ℤ)
51, 4sylbi 208 . . . 4 (𝑀 ∈ (0...𝐿) → (𝐿𝑀) ∈ ℤ)
65adantr 472 . . 3 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐿𝑀) ∈ ℤ)
7 elfzonelfzo 12778 . . 3 ((𝐿𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
86, 7syl 17 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
9 elfzoelz 12678 . . . 4 (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → 𝐾 ∈ ℤ)
10 elfzelz 12549 . . . . . . . . . . . . . 14 (𝑁 ∈ (𝐿...𝑋) → 𝑁 ∈ ℤ)
11 simpl 474 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝐿 ∈ ℤ)
12 simpl 474 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℤ)
1311, 12anim12i 606 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ))
14 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → 𝑀 ∈ ℤ)
15 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℤ)
1614, 15anim12ci 607 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
1713, 16jca 507 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))
1817exp32 411 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℤ → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
1910, 18syl5 34 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
20193adant1 1160 . . . . . . . . . . . 12 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
2120adantr 472 . . . . . . . . . . 11 (((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
221, 21sylbi 208 . . . . . . . . . 10 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...𝑋) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))))
2322imp 395 . . . . . . . . 9 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ℤ → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))))
2423impcom 396 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)))
25 elfzomelpfzo 12780 . . . . . . . 8 (((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) ↔ (𝐾 + 𝑀) ∈ (𝐿..^𝑁)))
2624, 25syl 17 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) ↔ (𝐾 + 𝑀) ∈ (𝐿..^𝑁)))
27 elfz2 12540 . . . . . . . . . . . . 13 (𝑁 ∈ (𝐿...𝑋) ↔ ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)))
28 simpl3 1246 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → 𝑁 ∈ ℤ)
29 simpl2 1244 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → 𝑋 ∈ ℤ)
30 simpr 477 . . . . . . . . . . . . . . 15 ((𝐿𝑁𝑁𝑋) → 𝑁𝑋)
3130adantl 473 . . . . . . . . . . . . . 14 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → 𝑁𝑋)
3228, 29, 313jca 1158 . . . . . . . . . . . . 13 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3327, 32sylbi 208 . . . . . . . . . . . 12 (𝑁 ∈ (𝐿...𝑋) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3433adantl 473 . . . . . . . . . . 11 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3534adantl 473 . . . . . . . . . 10 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
36 eluz2 11892 . . . . . . . . . 10 (𝑋 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁𝑋))
3735, 36sylibr 225 . . . . . . . . 9 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → 𝑋 ∈ (ℤ𝑁))
38 fzoss2 12704 . . . . . . . . 9 (𝑋 ∈ (ℤ𝑁) → (𝐿..^𝑁) ⊆ (𝐿..^𝑋))
3937, 38syl 17 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝐿..^𝑁) ⊆ (𝐿..^𝑋))
4039sseld 3760 . . . . . . 7 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → ((𝐾 + 𝑀) ∈ (𝐿..^𝑁) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
4126, 40sylbid 231 . . . . . 6 ((𝐾 ∈ ℤ ∧ (𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋))) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
4241ex 401 . . . . 5 (𝐾 ∈ ℤ → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋))))
4342com23 86 . . . 4 (𝐾 ∈ ℤ → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋))))
449, 43mpcom 38 . . 3 (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
4544com12 32 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
468, 45syld 47 1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 + 𝑀) ∈ (𝐿..^𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107  wcel 2155  wss 3732   class class class wbr 4809  cfv 6068  (class class class)co 6842  0cc0 10189   + caddc 10192  cle 10329  cmin 10520  cz 11624  cuz 11886  ...cfz 12533  ..^cfzo 12673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-fzo 12674
This theorem is referenced by:  pfxccatin12lem2  13736  swrdccatin12lem2OLD  13737
  Copyright terms: Public domain W3C validator