Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdccatin12lem2bOLD Structured version   Visualization version   GIF version

Theorem swrdccatin12lem2bOLD 13789
 Description: Obsolete proof of pfxccatin12lem1 13788 as of 12-Oct-2022. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 27-May-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
swrdccatin12lem2bOLD ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^((𝑁𝐿) − 0))))

Proof of Theorem swrdccatin12lem2bOLD
StepHypRef Expression
1 elfz2 12587 . . . . 5 (𝑀 ∈ (0...𝐿) ↔ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)))
2 zsubcl 11709 . . . . . . 7 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
323adant1 1161 . . . . . 6 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
43adantr 473 . . . . 5 (((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)) → (𝐿𝑀) ∈ ℤ)
51, 4sylbi 209 . . . 4 (𝑀 ∈ (0...𝐿) → (𝐿𝑀) ∈ ℤ)
65adantr 473 . . 3 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐿𝑀) ∈ ℤ)
7 elfzonelfzo 12825 . . 3 ((𝐿𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
86, 7syl 17 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
9 elfz2nn0 12685 . . . . . . . 8 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
10 nn0cn 11591 . . . . . . . . . 10 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
11 nn0cn 11591 . . . . . . . . . 10 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
12 elfzelz 12596 . . . . . . . . . . . 12 (𝑁 ∈ (𝐿...𝑋) → 𝑁 ∈ ℤ)
13 zcn 11671 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
14 subcl 10571 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1514ancoms 451 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1615addid1d 10526 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝐿𝑀) + 0) = (𝐿𝑀))
1716eqcomd 2805 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿𝑀) = ((𝐿𝑀) + 0))
1817adantl 474 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → (𝐿𝑀) = ((𝐿𝑀) + 0))
19 simprr 790 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → 𝐿 ∈ ℂ)
20 simpl 475 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → 𝑀 ∈ ℂ)
2120adantl 474 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → 𝑀 ∈ ℂ)
22 simpl 475 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → 𝑁 ∈ ℂ)
2319, 21, 22npncan3d 10720 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
24 subcl 10571 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝑁𝐿) ∈ ℂ)
25 subid1 10593 . . . . . . . . . . . . . . . . . . 19 ((𝑁𝐿) ∈ ℂ → ((𝑁𝐿) − 0) = (𝑁𝐿))
2625eqcomd 2805 . . . . . . . . . . . . . . . . . 18 ((𝑁𝐿) ∈ ℂ → (𝑁𝐿) = ((𝑁𝐿) − 0))
2724, 26syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝑁𝐿) = ((𝑁𝐿) − 0))
2827adantrl 708 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → (𝑁𝐿) = ((𝑁𝐿) − 0))
2928oveq2d 6894 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → ((𝐿𝑀) + (𝑁𝐿)) = ((𝐿𝑀) + ((𝑁𝐿) − 0)))
3023, 29eqtr3d 2835 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → (𝑁𝑀) = ((𝐿𝑀) + ((𝑁𝐿) − 0)))
3118, 30oveq12d 6896 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + ((𝑁𝐿) − 0))))
3231ex 402 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + ((𝑁𝐿) − 0)))))
3312, 13, 323syl 18 . . . . . . . . . . 11 (𝑁 ∈ (𝐿...𝑋) → ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + ((𝑁𝐿) − 0)))))
3433com12 32 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + ((𝑁𝐿) − 0)))))
3510, 11, 34syl2an 590 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + ((𝑁𝐿) − 0)))))
36353adant3 1163 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + ((𝑁𝐿) − 0)))))
379, 36sylbi 209 . . . . . . 7 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + ((𝑁𝐿) − 0)))))
3837imp 396 . . . . . 6 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + ((𝑁𝐿) − 0))))
3938eleq2d 2864 . . . . 5 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) ↔ 𝐾 ∈ (((𝐿𝑀) + 0)..^((𝐿𝑀) + ((𝑁𝐿) − 0)))))
4039biimpa 469 . . . 4 (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) ∧ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))) → 𝐾 ∈ (((𝐿𝑀) + 0)..^((𝐿𝑀) + ((𝑁𝐿) − 0))))
41 0zd 11678 . . . . . 6 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 0 ∈ ℤ)
42 elfz2 12587 . . . . . . . 8 (𝑁 ∈ (𝐿...𝑋) ↔ ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)))
43 zsubcl 11709 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
4443ancoms 451 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
45 0zd 11678 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℤ)
4644, 45zsubcld 11777 . . . . . . . . . 10 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁𝐿) − 0) ∈ ℤ)
47463adant2 1162 . . . . . . . . 9 ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁𝐿) − 0) ∈ ℤ)
4847adantr 473 . . . . . . . 8 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → ((𝑁𝐿) − 0) ∈ ℤ)
4942, 48sylbi 209 . . . . . . 7 (𝑁 ∈ (𝐿...𝑋) → ((𝑁𝐿) − 0) ∈ ℤ)
5049adantl 474 . . . . . 6 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝑁𝐿) − 0) ∈ ℤ)
516, 41, 503jca 1159 . . . . 5 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐿𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ ((𝑁𝐿) − 0) ∈ ℤ))
5251adantr 473 . . . 4 (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) ∧ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))) → ((𝐿𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ ((𝑁𝐿) − 0) ∈ ℤ))
53 fzosubel2 12783 . . . 4 ((𝐾 ∈ (((𝐿𝑀) + 0)..^((𝐿𝑀) + ((𝑁𝐿) − 0))) ∧ ((𝐿𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ ((𝑁𝐿) − 0) ∈ ℤ)) → (𝐾 − (𝐿𝑀)) ∈ (0..^((𝑁𝐿) − 0)))
5440, 52, 53syl2anc 580 . . 3 (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) ∧ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^((𝑁𝐿) − 0)))
5554ex 402 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 − (𝐿𝑀)) ∈ (0..^((𝑁𝐿) − 0))))
568, 55syld 47 1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^((𝑁𝐿) − 0))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 385   ∧ w3a 1108   = wceq 1653   ∈ wcel 2157   class class class wbr 4843  (class class class)co 6878  ℂcc 10222  0cc0 10224   + caddc 10227   ≤ cle 10364   − cmin 10556  ℕ0cn0 11580  ℤcz 11666  ...cfz 12580  ..^cfzo 12720 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-n0 11581  df-z 11667  df-uz 11931  df-fz 12581  df-fzo 12721 This theorem is referenced by:  swrdccatin12lem2OLD  13793
 Copyright terms: Public domain W3C validator