![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrdn0OLD | Structured version Visualization version GIF version |
Description: Obsolete version of pfxn0 13726 as of 12-Oct-2022. (Contributed by Alexander van der Vekens, 4-Aug-2018.) (Proof shortened by AV, 2-May-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
swrdn0OLD | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑊 substr 〈0, 𝑁〉) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lbfzo0 12760 | . . . 4 ⊢ (0 ∈ (0..^𝑁) ↔ 𝑁 ∈ ℕ) | |
2 | ne0i 4120 | . . . 4 ⊢ (0 ∈ (0..^𝑁) → (0..^𝑁) ≠ ∅) | |
3 | 1, 2 | sylbir 227 | . . 3 ⊢ (𝑁 ∈ ℕ → (0..^𝑁) ≠ ∅) |
4 | 3 | 3ad2ant2 1165 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (0..^𝑁) ≠ ∅) |
5 | simp1 1167 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → 𝑊 ∈ Word 𝑉) | |
6 | nnnn0 11585 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
7 | 6 | 3ad2ant2 1165 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → 𝑁 ∈ ℕ0) |
8 | lencl 13550 | . . . . . . 7 ⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0) | |
9 | 8 | 3ad2ant1 1164 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (♯‘𝑊) ∈ ℕ0) |
10 | simp3 1169 | . . . . . 6 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → 𝑁 ≤ (♯‘𝑊)) | |
11 | elfz2nn0 12682 | . . . . . 6 ⊢ (𝑁 ∈ (0...(♯‘𝑊)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ 𝑁 ≤ (♯‘𝑊))) | |
12 | 7, 9, 10, 11 | syl3anbrc 1444 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → 𝑁 ∈ (0...(♯‘𝑊))) |
13 | swrd0fOLD 13675 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ (0...(♯‘𝑊))) → (𝑊 substr 〈0, 𝑁〉):(0..^𝑁)⟶𝑉) | |
14 | 5, 12, 13 | syl2anc 580 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑊 substr 〈0, 𝑁〉):(0..^𝑁)⟶𝑉) |
15 | f0dom0 6303 | . . . . 5 ⊢ ((𝑊 substr 〈0, 𝑁〉):(0..^𝑁)⟶𝑉 → ((0..^𝑁) = ∅ ↔ (𝑊 substr 〈0, 𝑁〉) = ∅)) | |
16 | 15 | bicomd 215 | . . . 4 ⊢ ((𝑊 substr 〈0, 𝑁〉):(0..^𝑁)⟶𝑉 → ((𝑊 substr 〈0, 𝑁〉) = ∅ ↔ (0..^𝑁) = ∅)) |
17 | 14, 16 | syl 17 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((𝑊 substr 〈0, 𝑁〉) = ∅ ↔ (0..^𝑁) = ∅)) |
18 | 17 | necon3bid 3014 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → ((𝑊 substr 〈0, 𝑁〉) ≠ ∅ ↔ (0..^𝑁) ≠ ∅)) |
19 | 4, 18 | mpbird 249 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ (♯‘𝑊)) → (𝑊 substr 〈0, 𝑁〉) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2970 ∅c0 4114 〈cop 4373 class class class wbr 4842 ⟶wf 6096 ‘cfv 6100 (class class class)co 6877 0cc0 10223 ≤ cle 10363 ℕcn 11311 ℕ0cn0 11577 ...cfz 12577 ..^cfzo 12717 ♯chash 13367 Word cword 13531 substr csubstr 13661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2776 ax-rep 4963 ax-sep 4974 ax-nul 4982 ax-pow 5034 ax-pr 5096 ax-un 7182 ax-cnex 10279 ax-resscn 10280 ax-1cn 10281 ax-icn 10282 ax-addcl 10283 ax-addrcl 10284 ax-mulcl 10285 ax-mulrcl 10286 ax-mulcom 10287 ax-addass 10288 ax-mulass 10289 ax-distr 10290 ax-i2m1 10291 ax-1ne0 10292 ax-1rid 10293 ax-rnegex 10294 ax-rrecex 10295 ax-cnre 10296 ax-pre-lttri 10297 ax-pre-lttrn 10298 ax-pre-ltadd 10299 ax-pre-mulgt0 10300 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-ne 2971 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3386 df-sbc 3633 df-csb 3728 df-dif 3771 df-un 3773 df-in 3775 df-ss 3782 df-pss 3784 df-nul 4115 df-if 4277 df-pw 4350 df-sn 4368 df-pr 4370 df-tp 4372 df-op 4374 df-uni 4628 df-int 4667 df-iun 4711 df-br 4843 df-opab 4905 df-mpt 4922 df-tr 4945 df-id 5219 df-eprel 5224 df-po 5232 df-so 5233 df-fr 5270 df-we 5272 df-xp 5317 df-rel 5318 df-cnv 5319 df-co 5320 df-dm 5321 df-rn 5322 df-res 5323 df-ima 5324 df-pred 5897 df-ord 5943 df-on 5944 df-lim 5945 df-suc 5946 df-iota 6063 df-fun 6102 df-fn 6103 df-f 6104 df-f1 6105 df-fo 6106 df-f1o 6107 df-fv 6108 df-riota 6838 df-ov 6880 df-oprab 6881 df-mpt2 6882 df-om 7299 df-1st 7400 df-2nd 7401 df-wrecs 7644 df-recs 7706 df-rdg 7744 df-1o 7798 df-oadd 7802 df-er 7981 df-en 8195 df-dom 8196 df-sdom 8197 df-fin 8198 df-card 9050 df-pnf 10364 df-mnf 10365 df-xr 10366 df-ltxr 10367 df-le 10368 df-sub 10557 df-neg 10558 df-nn 11312 df-n0 11578 df-z 11664 df-uz 11928 df-fz 12578 df-fzo 12718 df-hash 13368 df-word 13532 df-substr 13662 |
This theorem is referenced by: wwlksnredOLD 27154 clwlkclwwlkOLD 27289 clwwlkinwwlkOLD 27342 clwlksfclwwlkOLD 27396 |
Copyright terms: Public domain | W3C validator |