![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > swrdtrcfvOLD | Structured version Visualization version GIF version |
Description: Obsolete version of pfxtrcfv 13771 as of 12-Oct-2022. (Contributed by Alexander van der Vekens, 16-Jun-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
swrdtrcfvOLD | ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝐼 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 substr 〈0, ((♯‘𝑊) − 1)〉)‘𝐼) = (𝑊‘𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lennncl 13593 | . . . . 5 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ) | |
2 | 1nn0 11635 | . . . . . . . 8 ⊢ 1 ∈ ℕ0 | |
3 | 2 | a1i 11 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ → 1 ∈ ℕ0) |
4 | nnnn0 11625 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℕ0) | |
5 | nnge1 11379 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ → 1 ≤ (♯‘𝑊)) | |
6 | elfz2nn0 12724 | . . . . . . 7 ⊢ (1 ∈ (0...(♯‘𝑊)) ↔ (1 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0 ∧ 1 ≤ (♯‘𝑊))) | |
7 | 3, 4, 5, 6 | syl3anbrc 1449 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℕ → 1 ∈ (0...(♯‘𝑊))) |
8 | elfz1end 12663 | . . . . . . 7 ⊢ ((♯‘𝑊) ∈ ℕ ↔ (♯‘𝑊) ∈ (1...(♯‘𝑊))) | |
9 | 8 | biimpi 208 | . . . . . 6 ⊢ ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ (1...(♯‘𝑊))) |
10 | 7, 9 | jca 509 | . . . . 5 ⊢ ((♯‘𝑊) ∈ ℕ → (1 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (1...(♯‘𝑊)))) |
11 | 1, 10 | syl 17 | . . . 4 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅) → (1 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (1...(♯‘𝑊)))) |
12 | 11 | 3adant3 1168 | . . 3 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝐼 ∈ (0..^((♯‘𝑊) − 1))) → (1 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (1...(♯‘𝑊)))) |
13 | fz0fzdiffz0 12742 | . . 3 ⊢ ((1 ∈ (0...(♯‘𝑊)) ∧ (♯‘𝑊) ∈ (1...(♯‘𝑊))) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝐼 ∈ (0..^((♯‘𝑊) − 1))) → ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊))) |
15 | swrd0fvOLD 13727 | . 2 ⊢ ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0...(♯‘𝑊)) ∧ 𝐼 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 substr 〈0, ((♯‘𝑊) − 1)〉)‘𝐼) = (𝑊‘𝐼)) | |
16 | 14, 15 | syld3an2 1537 | 1 ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ∧ 𝐼 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 substr 〈0, ((♯‘𝑊) − 1)〉)‘𝐼) = (𝑊‘𝐼)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ≠ wne 2998 ∅c0 4143 〈cop 4402 class class class wbr 4872 ‘cfv 6122 (class class class)co 6904 0cc0 10251 1c1 10252 ≤ cle 10391 − cmin 10584 ℕcn 11349 ℕ0cn0 11617 ...cfz 12618 ..^cfzo 12759 ♯chash 13409 Word cword 13573 substr csubstr 13699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-int 4697 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-1st 7427 df-2nd 7428 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-1o 7825 df-oadd 7829 df-er 8008 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-card 9077 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-nn 11350 df-n0 11618 df-z 11704 df-uz 11968 df-fz 12619 df-fzo 12760 df-hash 13410 df-word 13574 df-substr 13700 |
This theorem is referenced by: swrdtrcfv0OLD 13730 clwlkclwwlkOLD 27331 |
Copyright terms: Public domain | W3C validator |