![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl5breqr | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 24-Apr-2005.) |
Ref | Expression |
---|---|
syl5breqr.1 | ⊢ 𝐴𝑅𝐵 |
syl5breqr.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
syl5breqr | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5breqr.1 | . 2 ⊢ 𝐴𝑅𝐵 | |
2 | syl5breqr.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2778 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | syl5breq 4960 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 class class class wbr 4923 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4924 |
This theorem is referenced by: r1sdom 8989 alephordilem1 9285 mulge0 10951 xsubge0 12463 xmulgt0 12485 xmulge0 12486 xlemul1a 12490 sqlecan 13379 bernneq 13398 hashge1 13556 hashge2el2dif 13639 cnpart 14450 sqr0lem 14451 bitsfzo 15634 bitsmod 15635 bitsinv1lem 15640 pcge0 16044 prmreclem4 16101 prmreclem5 16102 isabvd 19303 abvtrivd 19323 isnzr2hash 19748 nmolb2d 23020 nmoi 23030 nmoleub 23033 nmo0 23037 ovolge0 23775 itg1ge0a 24005 fta1g 24454 plyrem 24587 taylfval 24640 abelthlem2 24713 sinq12ge0 24787 relogrn 24836 logneg 24862 cxpge0 24957 amgmlem 25259 bposlem5 25556 lgsdir2lem2 25594 2lgsoddprmlem3 25682 rpvmasumlem 25755 eupth2lem3lem3 27750 eupth2lemb 27757 blocnilem 28348 pjssge0ii 29230 unierri 29652 xlt2addrd 30223 locfinref 30706 esumcst 30923 ballotlem5 31360 poimirlem23 34304 poimirlem25 34306 poimirlem26 34307 poimirlem27 34308 poimirlem28 34309 itgaddnclem2 34340 pell14qrgt0 38797 monotoddzzfi 38880 rmxypos 38885 rmygeid 38902 stoweidlem18 41680 stoweidlem55 41717 wallispi2lem1 41733 fourierdlem62 41830 fourierdlem103 41871 fourierdlem104 41872 fourierswlem 41892 pgrpgt2nabl 43720 pw2m1lepw2m1 43883 amgmwlem 44210 |
Copyright terms: Public domain | W3C validator |