![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl5eleqr | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl5eleqr.1 | ⊢ 𝐴 ∈ 𝐵 |
syl5eleqr.2 | ⊢ (𝜑 → 𝐶 = 𝐵) |
Ref | Expression |
---|---|
syl5eleqr | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eleqr.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | syl5eleqr.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐵) | |
3 | 2 | eqcomd 2783 | . 2 ⊢ (𝜑 → 𝐵 = 𝐶) |
4 | 1, 3 | syl5eleq 2864 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1824 df-cleq 2769 df-clel 2773 |
This theorem is referenced by: rabsnt 4497 onnev 6096 opabiota 6521 canth 6880 onnseq 7724 tfrlem16 7772 oen0 7950 nnawordex 8001 inf0 8815 cantnflt 8866 cnfcom2 8896 cnfcom3lem 8897 cnfcom3 8898 r1ordg 8938 r1val1 8946 rankr1id 9022 acacni 9297 dfacacn 9298 dfac13 9299 cda1dif 9333 ttukeylem5 9670 ttukeylem6 9671 gch2 9832 gch3 9833 gchac 9838 gchina 9856 swrds1 13771 wrdl3s3 14114 sadcp1 15583 lcmfunsnlem2 15759 xpsfrnel2 16611 idfucl 16926 gsumval2 17666 gsumz 17760 frmdmnd 17783 frmd0 17784 efginvrel2 18524 efgcpbl2 18556 pgpfaclem1 18867 lbsexg 19561 zringndrg 20234 frlmlbs 20540 mat0dimscm 20680 mat0scmat 20749 m2detleiblem5 20836 m2detleiblem6 20837 m2detleiblem3 20840 m2detleiblem4 20841 d0mat2pmat 20950 chpmat0d 21046 dfac14 21830 acufl 22129 cnextfvval 22277 cnextcn 22279 minveclem3b 23634 minveclem4a 23636 ovollb2 23693 ovolunlem1a 23700 ovolunlem1 23701 ovoliunlem1 23706 ovoliun2 23710 ioombl1lem4 23765 uniioombllem1 23785 uniioombllem2 23787 uniioombllem6 23792 itg2monolem1 23954 itg2mono 23957 itg2cnlem1 23965 xrlimcnp 25147 efrlim 25148 eengbas 26330 ebtwntg 26331 ecgrtg 26332 elntg 26333 wlkl1loop 26985 elwwlks2ons3im 27334 upgr3v3e3cycl 27583 upgr4cycl4dv4e 27588 2clwwlk2clwwlk 27761 2clwwlk2clwwlkOLD 27762 ex-br 27863 rge0scvg 30593 repr0 31291 hgt750lemg 31334 mrsub0 32012 elmrsubrn 32016 topjoin 32948 pclfinN 36038 aomclem1 38565 dfac21 38577 clsk1indlem1 39281 fourierdlem102 41334 fourierdlem114 41346 lincval0 43201 lcoel0 43214 |
Copyright terms: Public domain | W3C validator |