![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl5eqbrr | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 17-Sep-2004.) |
Ref | Expression |
---|---|
syl5eqbrr.1 | ⊢ 𝐵 = 𝐴 |
syl5eqbrr.2 | ⊢ (𝜑 → 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
syl5eqbrr | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqbrr.2 | . 2 ⊢ (𝜑 → 𝐵𝑅𝐶) | |
2 | syl5eqbrr.1 | . 2 ⊢ 𝐵 = 𝐴 | |
3 | eqid 2778 | . 2 ⊢ 𝐶 = 𝐶 | |
4 | 1, 2, 3 | 3brtr3g 4921 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Copyright terms: Public domain | W3C validator |