![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl5eqner | Structured version Visualization version GIF version |
Description: A chained equality inference for inequality. (Contributed by NM, 6-Jun-2012.) (Proof shortened by Wolf Lammen, 19-Nov-2019.) |
Ref | Expression |
---|---|
syl5eqner.1 | ⊢ 𝐵 = 𝐴 |
syl5eqner.2 | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
syl5eqner | ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqner.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝜑 → 𝐵 = 𝐴) |
3 | syl5eqner.2 | . 2 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
4 | 2, 3 | eqnetrrd 3039 | 1 ⊢ (𝜑 → 𝐴 ≠ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ≠ wne 2971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-cleq 2792 df-ne 2972 |
This theorem is referenced by: xpcoidgend 14057 fclsfnflim 22159 ptcmplem2 22185 vieta1lem1 24406 vieta1lem2 24407 signsvfpn 31182 signsvfnn 31183 finxpreclem2 33725 finxp1o 33727 cdleme3h 36256 cdleme7ga 36269 fourierdlem42 41109 |
Copyright terms: Public domain | W3C validator |