![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl5eqssr | Structured version Visualization version GIF version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
syl5eqssr.1 | ⊢ 𝐵 = 𝐴 |
syl5eqssr.2 | ⊢ (𝜑 → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
syl5eqssr | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqssr.1 | . . 3 ⊢ 𝐵 = 𝐴 | |
2 | 1 | eqcomi 2787 | . 2 ⊢ 𝐴 = 𝐵 |
3 | syl5eqssr.2 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | syl5eqss 3907 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ⊆ wss 3831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-in 3838 df-ss 3845 |
This theorem is referenced by: relcnvtr 5960 fimacnvdisj 6388 dffv2 6586 fimacnv 6666 f1ompt 6700 abnexg 7297 fnwelem 7632 tfrlem15 7834 omxpenlem 8416 hartogslem1 8803 infxpidm2 9239 alephgeom 9304 infenaleph 9313 cfflb 9481 pwfseqlem5 9885 imasvscafn 16669 mrieqvlemd 16761 cnvps 17683 dirdm 17705 tsrdir 17709 frmdss2 17872 subdrgint 19307 iinopn 21217 neitr 21495 xkococnlem 21974 tgpconncomp 22427 trcfilu 22609 mbfconstlem 23934 itg2seq 24049 limcdif 24180 dvres2lem 24214 c1lip3 24302 lhop 24319 plyeq0 24507 dchrghm 25537 uspgrupgrushgr 26668 upgrreslem 26792 umgrreslem 26793 umgrres1 26802 umgr2v2e 27013 chssoc 29057 dimkerim 30652 hauseqcn 30782 carsgclctunlem3 31223 cvmliftmolem1 32113 cvmlift2lem9a 32135 cvmlift2lem9 32143 cnres2 34483 rngunsnply 39169 proot1hash 39196 clcnvlem 39346 cnvtrcl0 39349 trrelsuperrel2dg 39379 brtrclfv2 39435 fourierdlem92 41915 vsetrec 44173 |
Copyright terms: Public domain | W3C validator |