![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl5rbb | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 1-Aug-1993.) |
Ref | Expression |
---|---|
syl5rbb.1 | ⊢ (𝜑 ↔ 𝜓) |
syl5rbb.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5rbb | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5rbb.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | syl5rbb.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 1, 2 | syl5bb 275 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜃)) |
4 | 3 | bicomd 215 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 |
This theorem is referenced by: syl5rbbr 278 necon1abid 3007 necon4abid 3009 uniiunlem 3913 r19.9rzv 4288 inimasn 5804 fnresdisj 6247 f1oiso 6873 reldm 7498 rdglim2 7811 mptelixpg 8231 1idpr 10186 nndiv 11421 fz1sbc 12734 grpid 17844 znleval 20298 fbunfip 22081 lmflf 22217 metcld2 23513 lgsne0 25512 isuvtx 26743 loopclwwlkn1b 27432 clwwlknun 27514 frgrncvvdeqlem2 27708 isph 28249 ofpreima 30030 eulerpartlemd 31026 bnj168 31398 opelco3 32266 wl-2sb6d 33935 poimirlem26 34061 cnambfre 34083 heibor1 34233 opltn0 35344 cvrnbtwn2 35429 cvrnbtwn4 35433 atlltn0 35460 pmapjat1 36007 dih1dimatlem 37483 2rexfrabdioph 38320 dnwech 38577 rfovcnvf1od 39254 uneqsn 39277 2reu4a 42150 lighneallem2 42544 isrnghm 42907 rnghmval2 42910 |
Copyright terms: Public domain | W3C validator |