![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl5rbbr | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
syl5rbbr.1 | ⊢ (𝜓 ↔ 𝜑) |
syl5rbbr.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5rbbr | ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5rbbr.1 | . . 3 ⊢ (𝜓 ↔ 𝜑) | |
2 | 1 | bicomi 216 | . 2 ⊢ (𝜑 ↔ 𝜓) |
3 | syl5rbbr.2 | . 2 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | syl5rbb 276 | 1 ⊢ (𝜒 → (𝜃 ↔ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 |
This theorem is referenced by: sbco3 2535 necon2bbid 3013 fressnfv 6654 eluniima 6735 dfac2b 9238 dfac2OLD 9240 alephval2 9681 adderpqlem 10063 1idpr 10138 leloe 10413 negeq0 10626 muleqadd 10962 addltmul 11553 xrleloe 12221 fzrev 12654 mod0 12927 modirr 12993 cjne0 14241 lenegsq 14398 fsumsplit 14809 sumsplit 14835 dvdsabseq 15371 xpsfrnel 16535 isacs2 16625 acsfn 16631 comfeq 16677 sgrp2nmndlem3 17725 resscntz 18073 gexdvds 18309 hauscmplem 21535 hausdiag 21774 utop3cls 22380 ltgov 25841 ax5seglem4 26162 mdsl2i 29699 addeq0 30021 pl1cn 30510 topdifinfeq 33689 finxpreclem6 33724 ftc1anclem5 33970 fdc1 34022 relcnveq 34580 relcnveq2 34581 elrelscnveq 34729 elrelscnveq2 34730 lcvexchlem1 35048 lkreqN 35184 glbconxN 35392 islpln5 35549 islvol5 35593 cdlemefrs29bpre0 36410 cdlemg17h 36682 cdlemg33b 36721 brnonrel 38667 frege92 39020 e2ebind 39538 stoweidlem28 40977 |
Copyright terms: Public domain | W3C validator |