![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl6eqbr | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 12-Oct-1999.) |
Ref | Expression |
---|---|
syl6eqbr.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
syl6eqbr.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
syl6eqbr | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eqbr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
2 | syl6eqbr.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breq1d 4978 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
4 | 1, 3 | mpbiri 259 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1525 class class class wbr 4968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-br 4969 |
This theorem is referenced by: syl6eqbrr 5008 domunsn 8521 mapdom1 8536 mapdom2 8542 pm54.43 9282 infmap2 9493 inar1 10050 gruina 10093 nn0ledivnn 12356 xltnegi 12463 leexp1a 13393 discr 13455 facwordi 13503 faclbnd3 13506 hashgt12el 13635 hashle2pr 13685 cnpart 14437 geomulcvg 15069 dvds1 15506 ramz2 16193 ramz 16194 gex1 18450 sylow2a 18478 en1top 21280 en2top 21281 hmph0 22091 ptcmplem2 22349 dscmet 22869 dscopn 22870 xrge0tsms2 23130 htpycc 23271 pcohtpylem 23310 pcopt 23313 pcopt2 23314 pcoass 23315 pcorevlem 23317 vitalilem5 23900 dvef 24264 dveq0 24284 dv11cn 24285 deg1lt0 24372 ply1rem 24444 fta1g 24448 plyremlem 24580 aalioulem3 24610 pige3ALT 24792 relogrn 24830 logneg 24856 cxpaddlelem 25017 mule1 25411 ppiub 25466 dchrabs2 25524 bposlem1 25546 zabsle1 25558 lgseisen 25641 lgsquadlem2 25643 rpvmasumlem 25749 qabvle 25887 ostth3 25900 colinearalg 26383 eengstr 26453 clwwlknon1le1 27566 eucrct2eupth 27710 nmosetn0 28229 nmoo0 28255 siii 28317 bcsiALT 28643 branmfn 29569 esumrnmpt2 30940 ballotlemrc 31401 pthhashvtx 31984 subfacval3 32046 sconnpi1 32096 fz0n 32572 poimirlem31 34475 itg2addnclem 34495 ftc1anc 34527 radcnvrat 40205 infxr 41197 stoweidlem18 41867 stoweidlem55 41904 fourierdlem62 42017 fourierswlem 42079 exple2lt6 43914 |
Copyright terms: Public domain | W3C validator |