MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl6eqbrr Structured version   Visualization version   GIF version

Theorem syl6eqbrr 4965
Description: A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
syl6eqbrr.1 (𝜑𝐵 = 𝐴)
syl6eqbrr.2 𝐵𝑅𝐶
Assertion
Ref Expression
syl6eqbrr (𝜑𝐴𝑅𝐶)

Proof of Theorem syl6eqbrr
StepHypRef Expression
1 syl6eqbrr.1 . . 3 (𝜑𝐵 = 𝐴)
21eqcomd 2777 . 2 (𝜑𝐴 = 𝐵)
3 syl6eqbrr.2 . 2 𝐵𝑅𝐶
42, 3syl6eqbr 4964 1 (𝜑𝐴𝑅𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1508   class class class wbr 4925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2743
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-rab 3090  df-v 3410  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-br 4926
This theorem is referenced by:  grur1  10038  t1connperf  21763  basellem9  25383  sqff1o  25476  ballotlemic  31442  ballotlem1c  31443  pibt2  34176
  Copyright terms: Public domain W3C validator