![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl6eqbrr | Structured version Visualization version GIF version |
Description: A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl6eqbrr.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
syl6eqbrr.2 | ⊢ 𝐵𝑅𝐶 |
Ref | Expression |
---|---|
syl6eqbrr | ⊢ (𝜑 → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eqbrr.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2777 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | syl6eqbrr.2 | . 2 ⊢ 𝐵𝑅𝐶 | |
4 | 2, 3 | syl6eqbr 4964 | 1 ⊢ (𝜑 → 𝐴𝑅𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 class class class wbr 4925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-rab 3090 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-br 4926 |
This theorem is referenced by: grur1 10038 t1connperf 21763 basellem9 25383 sqff1o 25476 ballotlemic 31442 ballotlem1c 31443 pibt2 34176 |
Copyright terms: Public domain | W3C validator |