![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl6eqelr | Structured version Visualization version GIF version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl6eqelr.1 | ⊢ (𝜑 → 𝐵 = 𝐴) |
syl6eqelr.2 | ⊢ 𝐵 ∈ 𝐶 |
Ref | Expression |
---|---|
syl6eqelr | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eqelr.1 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2799 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) |
3 | syl6eqelr.2 | . 2 ⊢ 𝐵 ∈ 𝐶 | |
4 | 2, 3 | syl6eqel 2889 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1520 ∈ wcel 2079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-ext 2767 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1760 df-cleq 2786 df-clel 2861 |
This theorem is referenced by: wemoiso2 7522 releldm2 7589 mapprc 8251 ixpprc 8321 bren 8356 brdomg 8357 domssex 8515 mapen 8518 ssenen 8528 fodomfib 8634 fi0 8720 dffi3 8731 brwdom 8867 brwdomn0 8869 unxpwdom2 8888 ixpiunwdom 8891 tcmin 9018 rankonid 9093 rankr1id 9126 cardf2 9207 cardid2 9217 carduni 9245 fseqen 9288 acndom 9312 acndom2 9315 alephnbtwn 9332 cardcf 9509 cfeq0 9513 cflim2 9520 coftr 9530 infpssr 9565 hsmexlem5 9687 axdc3lem4 9710 fodomb 9783 ondomon 9820 gruina 10075 ioof 12674 hashbc 13647 hashfacen 13648 trclun 14196 zsum 14896 fsum 14898 fprod 15116 eqgen 18074 symgbas 18227 symgfisg 18315 dvdsr 19074 asplss 19779 aspsubrg 19781 psrval 19818 clsf 21328 restco 21444 subbascn 21534 is2ndc 21726 ptbasin2 21858 ptbas 21859 indishmph 22078 ufldom 22242 cnextfres1 22348 ussid 22540 icopnfcld 23047 cnrehmeo 23228 csscld 23523 clsocv 23524 itg2gt0 24032 dvmptadd 24228 dvmptmul 24229 dvmptco 24240 logcn 24899 selberglem1 25791 hmopidmchi 29607 sigagensiga 30973 dya2iocbrsiga 31106 dya2icobrsiga 31107 logdivsqrle 31494 fnessref 33259 unirep 34466 indexdom 34487 dicfnN 37800 pwslnmlem0 39127 mendval 39219 icof 40975 dvsubf 41693 dvdivf 41702 itgsinexplem1 41734 stirlinglem7 41861 fourierdlem73 41960 fouriersw 42012 ovolval4lem1 42427 |
Copyright terms: Public domain | W3C validator |