![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl6rbbr | Structured version Visualization version GIF version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
syl6rbbr.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
syl6rbbr.2 | ⊢ (𝜃 ↔ 𝜒) |
Ref | Expression |
---|---|
syl6rbbr | ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6rbbr.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | syl6rbbr.2 | . . 3 ⊢ (𝜃 ↔ 𝜒) | |
3 | 2 | bicomi 225 | . 2 ⊢ (𝜒 ↔ 𝜃) |
4 | 1, 3 | syl6rbb 289 | 1 ⊢ (𝜑 → (𝜃 ↔ 𝜓)) |
Copyright terms: Public domain | W3C validator |