![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl6sseq | Structured version Visualization version GIF version |
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
syl6sseq.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
syl6sseq.2 | ⊢ 𝐵 = 𝐶 |
Ref | Expression |
---|---|
syl6sseq | ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6sseq.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | syl6sseq.2 | . . 3 ⊢ 𝐵 = 𝐶 | |
3 | 2 | sseq2i 3917 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶) |
4 | 1, 3 | sylib 219 | 1 ⊢ (𝜑 → 𝐴 ⊆ 𝐶) |
Copyright terms: Public domain | W3C validator |