MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symdif2 Structured version   Visualization version   GIF version

Theorem symdif2 4001
Description: Two ways to express symmetric difference. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
symdif2 ((𝐴𝐵) ∪ (𝐵𝐴)) = {𝑥 ∣ ¬ (𝑥𝐴𝑥𝐵)}
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem symdif2
StepHypRef Expression
1 eldif 3733 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 eldif 3733 . . . 4 (𝑥 ∈ (𝐵𝐴) ↔ (𝑥𝐵 ∧ ¬ 𝑥𝐴))
31, 2orbi12i 900 . . 3 ((𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐵𝐴)) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
4 elun 3904 . . 3 (𝑥 ∈ ((𝐴𝐵) ∪ (𝐵𝐴)) ↔ (𝑥 ∈ (𝐴𝐵) ∨ 𝑥 ∈ (𝐵𝐴)))
5 xor 1000 . . 3 (¬ (𝑥𝐴𝑥𝐵) ↔ ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ∨ (𝑥𝐵 ∧ ¬ 𝑥𝐴)))
63, 4, 53bitr4i 292 . 2 (𝑥 ∈ ((𝐴𝐵) ∪ (𝐵𝐴)) ↔ ¬ (𝑥𝐴𝑥𝐵))
76abbi2i 2887 1 ((𝐴𝐵) ∪ (𝐵𝐴)) = {𝑥 ∣ ¬ (𝑥𝐴𝑥𝐵)}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 382  wo 836   = wceq 1631  wcel 2145  {cab 2757  cdif 3720  cun 3721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-v 3353  df-dif 3726  df-un 3728
This theorem is referenced by:  mbfeqalem  23629
  Copyright terms: Public domain W3C validator