MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposmpt2 Structured version   Visualization version   GIF version

Theorem tposmpt2 7653
Description: Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposmpt2.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
tposmpt2 tpos 𝐹 = (𝑦𝐵, 𝑥𝐴𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem tposmpt2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tposmpt2.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 df-mpt2 6909 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
3 ancom 454 . . . . . 6 ((𝑥𝐴𝑦𝐵) ↔ (𝑦𝐵𝑥𝐴))
43anbi1i 619 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶))
54oprabbii 6969 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
61, 2, 53eqtri 2852 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
76tposoprab 7652 . 2 tpos 𝐹 = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
8 df-mpt2 6909 . 2 (𝑦𝐵, 𝑥𝐴𝐶) = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
97, 8eqtr4i 2851 1 tpos 𝐹 = (𝑦𝐵, 𝑥𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 386   = wceq 1658  wcel 2166  {coprab 6905  cmpt2 6906  tpos ctpos 7615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-ral 3121  df-rex 3122  df-rab 3125  df-v 3415  df-sbc 3662  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-op 4403  df-uni 4658  df-br 4873  df-opab 4935  df-mpt 4952  df-id 5249  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-iota 6085  df-fun 6124  df-fn 6125  df-fv 6130  df-oprab 6908  df-mpt2 6909  df-tpos 7616
This theorem is referenced by:  tposconst  7654  oppchomf  16731  oppglsm  18407  mattpos1  20629  mamutpos  20631  madutpos  20815  mdetpmtr2  30434
  Copyright terms: Public domain W3C validator