MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uhgrvtxedgiedgbOLD Structured version   Visualization version   GIF version

Theorem uhgrvtxedgiedgbOLD 26435
Description: Obsolete version of uhgrvtxedgiedgb 26434 as of 6-Jul-2022. (Contributed by AV, 24-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
uhgrvtxedgiedgbOLD.v 𝑉 = (Vtx‘𝐺)
uhgrvtxedgiedgbOLD.i 𝐼 = (iEdg‘𝐺)
uhgrvtxedgiedgbOLD.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
uhgrvtxedgiedgbOLD ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖) ↔ ∃𝑒𝐸 𝑈𝑒))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐼,𝑖   𝑈,𝑒,𝑖
Allowed substitution hints:   𝐸(𝑖)   𝐺(𝑒,𝑖)   𝑉(𝑒,𝑖)

Proof of Theorem uhgrvtxedgiedgbOLD
StepHypRef Expression
1 edgval 26347 . . . . . . 7 (Edg‘𝐺) = ran (iEdg‘𝐺)
21a1i 11 . . . . . 6 (𝐺 ∈ UHGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
3 uhgrvtxedgiedgbOLD.e . . . . . 6 𝐸 = (Edg‘𝐺)
4 uhgrvtxedgiedgbOLD.i . . . . . . 7 𝐼 = (iEdg‘𝐺)
54rneqi 5584 . . . . . 6 ran 𝐼 = ran (iEdg‘𝐺)
62, 3, 53eqtr4g 2886 . . . . 5 (𝐺 ∈ UHGraph → 𝐸 = ran 𝐼)
76rexeqdv 3357 . . . 4 (𝐺 ∈ UHGraph → (∃𝑒𝐸 𝑈𝑒 ↔ ∃𝑒 ∈ ran 𝐼 𝑈𝑒))
84uhgrfun 26364 . . . . . 6 (𝐺 ∈ UHGraph → Fun 𝐼)
9 funfn 6153 . . . . . 6 (Fun 𝐼𝐼 Fn dom 𝐼)
108, 9sylib 210 . . . . 5 (𝐺 ∈ UHGraph → 𝐼 Fn dom 𝐼)
11 eleq2 2895 . . . . . 6 (𝑒 = (𝐼𝑖) → (𝑈𝑒𝑈 ∈ (𝐼𝑖)))
1211rexrn 6610 . . . . 5 (𝐼 Fn dom 𝐼 → (∃𝑒 ∈ ran 𝐼 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
1310, 12syl 17 . . . 4 (𝐺 ∈ UHGraph → (∃𝑒 ∈ ran 𝐼 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
147, 13bitrd 271 . . 3 (𝐺 ∈ UHGraph → (∃𝑒𝐸 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
1514adantr 474 . 2 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑒𝐸 𝑈𝑒 ↔ ∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖)))
1615bicomd 215 1 ((𝐺 ∈ UHGraph ∧ 𝑈𝑉) → (∃𝑖 ∈ dom 𝐼 𝑈 ∈ (𝐼𝑖) ↔ ∃𝑒𝐸 𝑈𝑒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wcel 2166  wrex 3118  dom cdm 5342  ran crn 5343  Fun wfun 6117   Fn wfn 6118  cfv 6123  Vtxcvtx 26294  iEdgciedg 26295  Edgcedg 26345  UHGraphcuhgr 26354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-mpt 4953  df-id 5250  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-fv 6131  df-edg 26346  df-uhgr 26356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator