![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uncdadom | Structured version Visualization version GIF version |
Description: Cardinal addition dominates union. (Contributed by NM, 28-Sep-2004.) |
Ref | Expression |
---|---|
uncdadom | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4924 | . . . . 5 ⊢ ∅ ∈ V | |
2 | xpsneng 8201 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴) | |
3 | 1, 2 | mpan2 671 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × {∅}) ≈ 𝐴) |
4 | ensym 8158 | . . . 4 ⊢ ((𝐴 × {∅}) ≈ 𝐴 → 𝐴 ≈ (𝐴 × {∅})) | |
5 | endom 8136 | . . . 4 ⊢ (𝐴 ≈ (𝐴 × {∅}) → 𝐴 ≼ (𝐴 × {∅})) | |
6 | 3, 4, 5 | 3syl 18 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≼ (𝐴 × {∅})) |
7 | 1on 7720 | . . . . 5 ⊢ 1𝑜 ∈ On | |
8 | xpsneng 8201 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ 1𝑜 ∈ On) → (𝐵 × {1𝑜}) ≈ 𝐵) | |
9 | 7, 8 | mpan2 671 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝐵 × {1𝑜}) ≈ 𝐵) |
10 | ensym 8158 | . . . 4 ⊢ ((𝐵 × {1𝑜}) ≈ 𝐵 → 𝐵 ≈ (𝐵 × {1𝑜})) | |
11 | endom 8136 | . . . 4 ⊢ (𝐵 ≈ (𝐵 × {1𝑜}) → 𝐵 ≼ (𝐵 × {1𝑜})) | |
12 | 9, 10, 11 | 3syl 18 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 𝐵 ≼ (𝐵 × {1𝑜})) |
13 | xp01disj 7730 | . . . 4 ⊢ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅ | |
14 | undom 8204 | . . . 4 ⊢ (((𝐴 ≼ (𝐴 × {∅}) ∧ 𝐵 ≼ (𝐵 × {1𝑜})) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅) → (𝐴 ∪ 𝐵) ≼ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) | |
15 | 13, 14 | mpan2 671 | . . 3 ⊢ ((𝐴 ≼ (𝐴 × {∅}) ∧ 𝐵 ≼ (𝐵 × {1𝑜})) → (𝐴 ∪ 𝐵) ≼ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) |
16 | 6, 12, 15 | syl2an 583 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) |
17 | cdaval 9194 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 +𝑐 𝐵) = ((𝐴 × {∅}) ∪ (𝐵 × {1𝑜}))) | |
18 | 16, 17 | breqtrrd 4814 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ≼ (𝐴 +𝑐 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ∪ cun 3721 ∩ cin 3722 ∅c0 4063 {csn 4316 class class class wbr 4786 × cxp 5247 Oncon0 5866 (class class class)co 6793 1𝑜c1o 7706 ≈ cen 8106 ≼ cdom 8107 +𝑐 ccda 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-ord 5869 df-on 5870 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-1o 7713 df-er 7896 df-en 8110 df-dom 8111 df-cda 9192 |
This theorem is referenced by: cdadom3 9212 unnum 9224 ficardun2 9227 pwsdompw 9228 unctb 9229 infunabs 9231 infcda 9232 infdif 9233 |
Copyright terms: Public domain | W3C validator |