Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisnOLD Structured version   Visualization version   GIF version

Theorem unisnOLD 4690
 Description: Obsolete proof of unisn 4689 as of 16-Sep-2022. (Contributed by NM, 30-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
unisn.1 𝐴 ∈ V
Assertion
Ref Expression
unisnOLD {𝐴} = 𝐴

Proof of Theorem unisnOLD
StepHypRef Expression
1 dfsn2 4411 . . 3 {𝐴} = {𝐴, 𝐴}
21unieqi 4682 . 2 {𝐴} = {𝐴, 𝐴}
3 unisn.1 . . 3 𝐴 ∈ V
43, 3unipr 4686 . 2 {𝐴, 𝐴} = (𝐴𝐴)
5 unidm 3979 . 2 (𝐴𝐴) = 𝐴
62, 4, 53eqtri 2806 1 {𝐴} = 𝐴
 Colors of variables: wff setvar class Syntax hints:   = wceq 1601   ∈ wcel 2107  Vcvv 3398   ∪ cun 3790  {csn 4398  {cpr 4400  ∪ cuni 4673 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-ext 2754 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-rex 3096  df-v 3400  df-un 3797  df-sn 4399  df-pr 4401  df-uni 4674 This theorem is referenced by:  unisngOLD  4691
 Copyright terms: Public domain W3C validator