![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unisnOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of unisn 4689 as of 16-Sep-2022. (Contributed by NM, 30-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
unisn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
unisnOLD | ⊢ ∪ {𝐴} = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsn2 4411 | . . 3 ⊢ {𝐴} = {𝐴, 𝐴} | |
2 | 1 | unieqi 4682 | . 2 ⊢ ∪ {𝐴} = ∪ {𝐴, 𝐴} |
3 | unisn.1 | . . 3 ⊢ 𝐴 ∈ V | |
4 | 3, 3 | unipr 4686 | . 2 ⊢ ∪ {𝐴, 𝐴} = (𝐴 ∪ 𝐴) |
5 | unidm 3979 | . 2 ⊢ (𝐴 ∪ 𝐴) = 𝐴 | |
6 | 2, 4, 5 | 3eqtri 2806 | 1 ⊢ ∪ {𝐴} = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∈ wcel 2107 Vcvv 3398 ∪ cun 3790 {csn 4398 {cpr 4400 ∪ cuni 4673 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rex 3096 df-v 3400 df-un 3797 df-sn 4399 df-pr 4401 df-uni 4674 |
This theorem is referenced by: unisngOLD 4691 |
Copyright terms: Public domain | W3C validator |