![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unisngOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of unisng 4672 as of 16-Sep-2022. (Contributed by NM, 13-Aug-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
unisngOLD | ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 4406 | . . . 4 ⊢ (𝑥 = 𝐴 → {𝑥} = {𝐴}) | |
2 | 1 | unieqd 4667 | . . 3 ⊢ (𝑥 = 𝐴 → ∪ {𝑥} = ∪ {𝐴}) |
3 | id 22 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
4 | 2, 3 | eqeq12d 2839 | . 2 ⊢ (𝑥 = 𝐴 → (∪ {𝑥} = 𝑥 ↔ ∪ {𝐴} = 𝐴)) |
5 | vex 3416 | . . 3 ⊢ 𝑥 ∈ V | |
6 | 5 | unisnOLD 4674 | . 2 ⊢ ∪ {𝑥} = 𝑥 |
7 | 4, 6 | vtoclg 3481 | 1 ⊢ (𝐴 ∈ 𝑉 → ∪ {𝐴} = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 {csn 4396 ∪ cuni 4657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2802 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-rex 3122 df-v 3415 df-un 3802 df-sn 4397 df-pr 4399 df-uni 4658 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |