![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unitresl | Structured version Visualization version GIF version |
Description: A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
Ref | Expression |
---|---|
unitresl.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
unitresl.2 | ⊢ (𝜑 → ¬ 𝜒) |
Ref | Expression |
---|---|
unitresl | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitresl.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | unitresl.2 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
3 | orcom 865 | . . 3 ⊢ ((𝜓 ∨ 𝜒) ↔ (𝜒 ∨ 𝜓)) | |
4 | df-or 843 | . . 3 ⊢ ((𝜒 ∨ 𝜓) ↔ (¬ 𝜒 → 𝜓)) | |
5 | 3, 4 | sylbb 220 | . 2 ⊢ ((𝜓 ∨ 𝜒) → (¬ 𝜒 → 𝜓)) |
6 | 1, 2, 5 | sylc 65 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-or 843 |
This theorem is referenced by: unitresr 868 |
Copyright terms: Public domain | W3C validator |