Step | Hyp | Ref
| Expression |
1 | | eqid 2825 |
. . . . 5
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
2 | | ushgredgedgloopOLD.i |
. . . . 5
⊢ 𝐼 = (iEdg‘𝐺) |
3 | 1, 2 | ushgrf 26368 |
. . . 4
⊢ (𝐺 ∈ USHGraph → 𝐼:dom 𝐼–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})) |
4 | 3 | adantr 474 |
. . 3
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐼:dom 𝐼–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅})) |
5 | | ssrab2 3914 |
. . 3
⊢ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ⊆ dom 𝐼 |
6 | | f1ores 6396 |
. . 3
⊢ ((𝐼:dom 𝐼–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ⊆ dom 𝐼) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}})) |
7 | 4, 5, 6 | sylancl 580 |
. 2
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}})) |
8 | | ushgredgedgloopOLD.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐼‘𝑥)) |
9 | | ushgredgedgloopOLD.a |
. . . . . . 7
⊢ 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} |
10 | 9 | a1i 11 |
. . . . . 6
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐴 = {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) |
11 | | eqidd 2826 |
. . . . . 6
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ 𝑥 ∈ 𝐴) → (𝐼‘𝑥) = (𝐼‘𝑥)) |
12 | 10, 11 | mpteq12dva 4957 |
. . . . 5
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑥 ∈ 𝐴 ↦ (𝐼‘𝑥)) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ↦ (𝐼‘𝑥))) |
13 | 8, 12 | syl5eq 2873 |
. . . 4
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ↦ (𝐼‘𝑥))) |
14 | | f1f 6342 |
. . . . . . 7
⊢ (𝐼:dom 𝐼–1-1→(𝒫 (Vtx‘𝐺) ∖ {∅}) → 𝐼:dom 𝐼⟶(𝒫 (Vtx‘𝐺) ∖
{∅})) |
15 | 3, 14 | syl 17 |
. . . . . 6
⊢ (𝐺 ∈ USHGraph → 𝐼:dom 𝐼⟶(𝒫 (Vtx‘𝐺) ∖
{∅})) |
16 | 5 | a1i 11 |
. . . . . 6
⊢ (𝐺 ∈ USHGraph → {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ⊆ dom 𝐼) |
17 | 15, 16 | feqresmpt 6501 |
. . . . 5
⊢ (𝐺 ∈ USHGraph → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ↦ (𝐼‘𝑥))) |
18 | 17 | adantr 474 |
. . . 4
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) = (𝑥 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ↦ (𝐼‘𝑥))) |
19 | 13, 18 | eqtr4d 2864 |
. . 3
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹 = (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}})) |
20 | | ushgruhgr 26374 |
. . . . . . . 8
⊢ (𝐺 ∈ USHGraph → 𝐺 ∈
UHGraph) |
21 | | eqid 2825 |
. . . . . . . . 9
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
22 | 21 | uhgrfun 26371 |
. . . . . . . 8
⊢ (𝐺 ∈ UHGraph → Fun
(iEdg‘𝐺)) |
23 | 20, 22 | syl 17 |
. . . . . . 7
⊢ (𝐺 ∈ USHGraph → Fun
(iEdg‘𝐺)) |
24 | 2 | funeqi 6148 |
. . . . . . 7
⊢ (Fun
𝐼 ↔ Fun
(iEdg‘𝐺)) |
25 | 23, 24 | sylibr 226 |
. . . . . 6
⊢ (𝐺 ∈ USHGraph → Fun
𝐼) |
26 | 25 | adantr 474 |
. . . . 5
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → Fun 𝐼) |
27 | | dfimafn 6496 |
. . . . 5
⊢ ((Fun
𝐼 ∧ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ⊆ dom 𝐼) → (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒}) |
28 | 26, 5, 27 | sylancl 580 |
. . . 4
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) = {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒}) |
29 | | fveq2 6437 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → (𝐼‘𝑖) = (𝐼‘𝑗)) |
30 | 29 | eqeq1d 2827 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → ((𝐼‘𝑖) = {𝑁} ↔ (𝐼‘𝑗) = {𝑁})) |
31 | 30 | elrab 3585 |
. . . . . . . . 9
⊢ (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ↔ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁})) |
32 | | simpl 476 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) → 𝑗 ∈ dom 𝐼) |
33 | | fvelrn 6606 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
𝐼 ∧ 𝑗 ∈ dom 𝐼) → (𝐼‘𝑗) ∈ ran 𝐼) |
34 | 2 | eqcomi 2834 |
. . . . . . . . . . . . . . . . 17
⊢
(iEdg‘𝐺) =
𝐼 |
35 | 34 | rneqi 5588 |
. . . . . . . . . . . . . . . 16
⊢ ran
(iEdg‘𝐺) = ran 𝐼 |
36 | 33, 35 | syl6eleqr 2917 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐼 ∧ 𝑗 ∈ dom 𝐼) → (𝐼‘𝑗) ∈ ran (iEdg‘𝐺)) |
37 | 26, 32, 36 | syl2an 589 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁})) → (𝐼‘𝑗) ∈ ran (iEdg‘𝐺)) |
38 | 37 | 3adant3 1166 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → (𝐼‘𝑗) ∈ ran (iEdg‘𝐺)) |
39 | | eleq1 2894 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (𝐼‘𝑗) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼‘𝑗) ∈ ran (iEdg‘𝐺))) |
40 | 39 | eqcoms 2833 |
. . . . . . . . . . . . . 14
⊢ ((𝐼‘𝑗) = 𝑓 → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼‘𝑗) ∈ ran (iEdg‘𝐺))) |
41 | 40 | 3ad2ant3 1169 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → (𝑓 ∈ ran (iEdg‘𝐺) ↔ (𝐼‘𝑗) ∈ ran (iEdg‘𝐺))) |
42 | 38, 41 | mpbird 249 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → 𝑓 ∈ ran (iEdg‘𝐺)) |
43 | | ushgredgedgloopOLD.e |
. . . . . . . . . . . . . . . 16
⊢ 𝐸 = (Edg‘𝐺) |
44 | | edgval 26354 |
. . . . . . . . . . . . . . . . 17
⊢
(Edg‘𝐺) = ran
(iEdg‘𝐺) |
45 | 44 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (𝐺 ∈ USHGraph →
(Edg‘𝐺) = ran
(iEdg‘𝐺)) |
46 | 43, 45 | syl5eq 2873 |
. . . . . . . . . . . . . . 15
⊢ (𝐺 ∈ USHGraph → 𝐸 = ran (iEdg‘𝐺)) |
47 | 46 | eleq2d 2892 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran (iEdg‘𝐺))) |
48 | 47 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran (iEdg‘𝐺))) |
49 | 48 | 3ad2ant1 1167 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → (𝑓 ∈ 𝐸 ↔ 𝑓 ∈ ran (iEdg‘𝐺))) |
50 | 42, 49 | mpbird 249 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → 𝑓 ∈ 𝐸) |
51 | | eqeq1 2829 |
. . . . . . . . . . . . . . 15
⊢ ((𝐼‘𝑗) = 𝑓 → ((𝐼‘𝑗) = {𝑁} ↔ 𝑓 = {𝑁})) |
52 | 51 | biimpcd 241 |
. . . . . . . . . . . . . 14
⊢ ((𝐼‘𝑗) = {𝑁} → ((𝐼‘𝑗) = 𝑓 → 𝑓 = {𝑁})) |
53 | 52 | adantl 475 |
. . . . . . . . . . . . 13
⊢ ((𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) → ((𝐼‘𝑗) = 𝑓 → 𝑓 = {𝑁})) |
54 | 53 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → ((𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) → ((𝐼‘𝑗) = 𝑓 → 𝑓 = {𝑁}))) |
55 | 54 | 3imp 1141 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → 𝑓 = {𝑁}) |
56 | 50, 55 | jca 507 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) ∧ (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) ∧ (𝐼‘𝑗) = 𝑓) → (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁})) |
57 | 56 | 3exp 1152 |
. . . . . . . . 9
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → ((𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁}) → ((𝐼‘𝑗) = 𝑓 → (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁})))) |
58 | 31, 57 | syl5bi 234 |
. . . . . . . 8
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} → ((𝐼‘𝑗) = 𝑓 → (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁})))) |
59 | 58 | rexlimdv 3239 |
. . . . . . 7
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓 → (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁}))) |
60 | | funfn 6157 |
. . . . . . . . . . . . . 14
⊢ (Fun
(iEdg‘𝐺) ↔
(iEdg‘𝐺) Fn dom
(iEdg‘𝐺)) |
61 | 60 | biimpi 208 |
. . . . . . . . . . . . 13
⊢ (Fun
(iEdg‘𝐺) →
(iEdg‘𝐺) Fn dom
(iEdg‘𝐺)) |
62 | 23, 61 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USHGraph →
(iEdg‘𝐺) Fn dom
(iEdg‘𝐺)) |
63 | | fvelrnb 6494 |
. . . . . . . . . . . 12
⊢
((iEdg‘𝐺) Fn
dom (iEdg‘𝐺) →
(𝑓 ∈ ran
(iEdg‘𝐺) ↔
∃𝑗 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓)) |
64 | 62, 63 | syl 17 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓)) |
65 | 34 | dmeqi 5561 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ dom
(iEdg‘𝐺) = dom 𝐼 |
66 | 65 | eleq2i 2898 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 ∈ dom (iEdg‘𝐺) ↔ 𝑗 ∈ dom 𝐼) |
67 | 66 | biimpi 208 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ dom (iEdg‘𝐺) → 𝑗 ∈ dom 𝐼) |
68 | 67 | adantr 474 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → 𝑗 ∈ dom 𝐼) |
69 | 68 | adantl 475 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ dom 𝐼) |
70 | 34 | fveq1i 6438 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
((iEdg‘𝐺)‘𝑗) = (𝐼‘𝑗) |
71 | 70 | eqeq2i 2837 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑓 = ((iEdg‘𝐺)‘𝑗) ↔ 𝑓 = (𝐼‘𝑗)) |
72 | 71 | biimpi 208 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑓 = ((iEdg‘𝐺)‘𝑗) → 𝑓 = (𝐼‘𝑗)) |
73 | 72 | eqcoms 2833 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 → 𝑓 = (𝐼‘𝑗)) |
74 | 73 | eqeq1d 2827 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑓 = {𝑁} ↔ (𝐼‘𝑗) = {𝑁})) |
75 | 74 | biimpcd 241 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑓 = {𝑁} → (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼‘𝑗) = {𝑁})) |
76 | 75 | adantl 475 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → (((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼‘𝑗) = {𝑁})) |
77 | 76 | adantld 486 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝐼‘𝑗) = {𝑁})) |
78 | 77 | imp 397 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝐼‘𝑗) = {𝑁}) |
79 | 69, 78 | jca 507 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ dom 𝐼 ∧ (𝐼‘𝑗) = {𝑁})) |
80 | 79, 31 | sylibr 226 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → 𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}) |
81 | 70 | eqeq1i 2830 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 ↔ (𝐼‘𝑗) = 𝑓) |
82 | 81 | biimpi 208 |
. . . . . . . . . . . . . . . . . 18
⊢
(((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝐼‘𝑗) = 𝑓) |
83 | 82 | adantl 475 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝐼‘𝑗) = 𝑓) |
84 | 83 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝐼‘𝑗) = 𝑓) |
85 | 80, 84 | jca 507 |
. . . . . . . . . . . . . . 15
⊢ (((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) ∧ (𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓)) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ∧ (𝐼‘𝑗) = 𝑓)) |
86 | 85 | ex 403 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → ((𝑗 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑗) = 𝑓) → (𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} ∧ (𝐼‘𝑗) = 𝑓))) |
87 | 86 | reximdv2 3222 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ USHGraph ∧ 𝑓 = {𝑁}) → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓)) |
88 | 87 | ex 403 |
. . . . . . . . . . . 12
⊢ (𝐺 ∈ USHGraph → (𝑓 = {𝑁} → (∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓))) |
89 | 88 | com23 86 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ USHGraph →
(∃𝑗 ∈ dom
(iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = 𝑓 → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓))) |
90 | 64, 89 | sylbid 232 |
. . . . . . . . . 10
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ ran (iEdg‘𝐺) → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓))) |
91 | 47, 90 | sylbid 232 |
. . . . . . . . 9
⊢ (𝐺 ∈ USHGraph → (𝑓 ∈ 𝐸 → (𝑓 = {𝑁} → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓))) |
92 | 91 | impd 400 |
. . . . . . . 8
⊢ (𝐺 ∈ USHGraph → ((𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁}) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓)) |
93 | 92 | adantr 474 |
. . . . . . 7
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → ((𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁}) → ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓)) |
94 | 59, 93 | impbid 204 |
. . . . . 6
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓 ↔ (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁}))) |
95 | | vex 3417 |
. . . . . . 7
⊢ 𝑓 ∈ V |
96 | | eqeq2 2836 |
. . . . . . . 8
⊢ (𝑒 = 𝑓 → ((𝐼‘𝑗) = 𝑒 ↔ (𝐼‘𝑗) = 𝑓)) |
97 | 96 | rexbidv 3262 |
. . . . . . 7
⊢ (𝑒 = 𝑓 → (∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒 ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓)) |
98 | 95, 97 | elab 3571 |
. . . . . 6
⊢ (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒} ↔ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑓) |
99 | | eqeq1 2829 |
. . . . . . 7
⊢ (𝑒 = 𝑓 → (𝑒 = {𝑁} ↔ 𝑓 = {𝑁})) |
100 | | ushgredgedgloopOLD.b |
. . . . . . 7
⊢ 𝐵 = {𝑒 ∈ 𝐸 ∣ 𝑒 = {𝑁}} |
101 | 99, 100 | elrab2 3589 |
. . . . . 6
⊢ (𝑓 ∈ 𝐵 ↔ (𝑓 ∈ 𝐸 ∧ 𝑓 = {𝑁})) |
102 | 94, 98, 101 | 3bitr4g 306 |
. . . . 5
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝑓 ∈ {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒} ↔ 𝑓 ∈ 𝐵)) |
103 | 102 | eqrdv 2823 |
. . . 4
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → {𝑒 ∣ ∃𝑗 ∈ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}} (𝐼‘𝑗) = 𝑒} = 𝐵) |
104 | 28, 103 | eqtr2d 2862 |
. . 3
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐵 = (𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}})) |
105 | 19, 10, 104 | f1oeq123d 6377 |
. 2
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → (𝐹:𝐴–1-1-onto→𝐵 ↔ (𝐼 ↾ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}):{𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}–1-1-onto→(𝐼 “ {𝑖 ∈ dom 𝐼 ∣ (𝐼‘𝑖) = {𝑁}}))) |
106 | 7, 105 | mpbird 249 |
1
⊢ ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ 𝑉) → 𝐹:𝐴–1-1-onto→𝐵) |