![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-clelv2-just | Structured version Visualization version GIF version |
Description: Show that the definition df-wl-clelv2 33869 is conservative. (Contributed by Wolf Lammen, 27-Nov-2021.) |
Ref | Expression |
---|---|
wl-clelv2-just | ⊢ (𝑥 ∈ 𝐴 ↔ ∀𝑢(𝑢 = 𝑥 → 𝑢 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-wl-8cl 33866 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑢 ∈ 𝐴 → 𝑥 ∈ 𝐴)) | |
2 | ax-wl-8cl 33866 | . . . . 5 ⊢ (𝑥 = 𝑢 → (𝑥 ∈ 𝐴 → 𝑢 ∈ 𝐴)) | |
3 | 2 | equcoms 2119 | . . . 4 ⊢ (𝑢 = 𝑥 → (𝑥 ∈ 𝐴 → 𝑢 ∈ 𝐴)) |
4 | 1, 3 | impbid 204 | . . 3 ⊢ (𝑢 = 𝑥 → (𝑢 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) |
5 | 4 | equsalvw 2103 | . 2 ⊢ (∀𝑢(𝑢 = 𝑥 → 𝑢 ∈ 𝐴) ↔ 𝑥 ∈ 𝐴) |
6 | 5 | bicomi 216 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ ∀𝑢(𝑢 = 𝑥 → 𝑢 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1651 ∈ wcel-wl 33862 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-wl-8cl 33866 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |