Step | Hyp | Ref
| Expression |
1 | | wl-dfrabsb 34308 |
. 2
⊢ {𝑥 : 𝐴 ∣ 𝜑} = {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)} |
2 | | nfnfc1 2935 |
. . . . . . 7
⊢
Ⅎ𝑥Ⅎ𝑥𝐴 |
3 | | id 22 |
. . . . . . 7
⊢
(Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) |
4 | 2, 3 | wl-clelsb3df 34310 |
. . . . . 6
⊢
(Ⅎ𝑥𝐴 → ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
5 | | clelsb3 2893 |
. . . . . 6
⊢ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴) |
6 | 4, 5 | syl6rbbr 282 |
. . . . 5
⊢
(Ⅎ𝑥𝐴 → ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ↔ [𝑧 / 𝑥]𝑥 ∈ 𝐴)) |
7 | | sbco2vv 2044 |
. . . . . 6
⊢ ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑) |
8 | 7 | a1i 11 |
. . . . 5
⊢
(Ⅎ𝑥𝐴 → ([𝑧 / 𝑦][𝑦 / 𝑥]𝜑 ↔ [𝑧 / 𝑥]𝜑)) |
9 | 6, 8 | anbi12d 621 |
. . . 4
⊢
(Ⅎ𝑥𝐴 → (([𝑧 / 𝑦]𝑦 ∈ 𝐴 ∧ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑) ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑))) |
10 | | df-clab 2759 |
. . . . 5
⊢ (𝑧 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)} ↔ [𝑧 / 𝑦](𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)) |
11 | | sban 2031 |
. . . . 5
⊢ ([𝑧 / 𝑦](𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ∧ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑)) |
12 | 10, 11 | bitri 267 |
. . . 4
⊢ (𝑧 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)} ↔ ([𝑧 / 𝑦]𝑦 ∈ 𝐴 ∧ [𝑧 / 𝑦][𝑦 / 𝑥]𝜑)) |
13 | | df-clab 2759 |
. . . . 5
⊢ (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ [𝑧 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) |
14 | | sban 2031 |
. . . . 5
⊢ ([𝑧 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) |
15 | 13, 14 | bitri 267 |
. . . 4
⊢ (𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) |
16 | 9, 12, 15 | 3bitr4g 306 |
. . 3
⊢
(Ⅎ𝑥𝐴 → (𝑧 ∈ {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)} ↔ 𝑧 ∈ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)})) |
17 | 16 | eqrdv 2776 |
. 2
⊢
(Ⅎ𝑥𝐴 → {𝑦 ∣ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
18 | 1, 17 | syl5eq 2826 |
1
⊢
(Ⅎ𝑥𝐴 → {𝑥 : 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |